Skip to main content
Log in

Study of conduction mechanism in aluminium and magnesium co-substituted lithium ferrite

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The conduction mechanism in Mg2 + and Al3 + substituted Li0.5Fe2.5O4 with general formula Mg x Al2xLi0.5(1 − x)Fe2.5(1 − x)O4 (x = 0.0, 0.2, 0.5, 0.6 and 0.7) has been studied by means of compositional and temperature dependent d.c. resistivity, thermoelectric power and I–V characteristics measurements. It is found that ferrites are electronic conductors. For x = 0.0 and 0.2 conduction is due to holes, while for x = 0.5, 0.6 and 0.7 it is due to electrons. Thermal variation of mobilities and activation energies determined through d.c. resistivity measurements confirm the formation of small polarons. The sample with x = 0.0 exhibits switching phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. RAVINDER and T. S. RAO, Cryst. Res. Technol. 25 (1990) 963.

    Google Scholar 

  2. D. RAVINDER, Mat. Lett. 40 (1999) 198.

    Article  Google Scholar 

  3. A. A. SATTAR, A. H. WAFIK and H. M. EL-SAYED, J. Mat. Sci. 36 (2001) 4703.

    Article  Google Scholar 

  4. N. REZLESCU, Rev. Roum. Phys. 15 (1970) 619.

    Google Scholar 

  5. R. MANJULA, V. R. K. MURTHY and J. SOBHANADRI, J. Appl. Phys. 59 (1986) 2929.

    Article  Google Scholar 

  6. P. V. REDDY and T. S. RAO, Phys. Stat. Sol. (a) 92 (1985) 303.

    Google Scholar 

  7. G. J. BALDHA, K. G. SAIJA, K. B. MODI, H. H. JOSHI and R. G. KULKARNI, Mat. Lett. 53 (2002) 233.

    Article  Google Scholar 

  8. K. B. MODI, J. D. GAJERA, M. C. CHHANTBAR, K. G. SAIJA, G. J. BALDHA and H. H. JOSHI, ibid. 57 (2003) 4049.

    Article  Google Scholar 

  9. G. G. ROBERTS, in “Transfer and Storage of Energies by Molecules” (John-Wiley, New York, 1974) Vol. 4.

    Google Scholar 

  10. H. W. RUSSEL, J. Am. Ceram. Soc. 18 (1935).

  11. B. GILLOT and F. JEMMALI, Phys. Stat. Sol. (a) 76 (1983) 601.

    Google Scholar 

  12. L. HEYNE, “Electrochemistry of Mixed ion Electroninc Conductors in Solid Electrolyte,” edited by S. Geller (Springer-Verlag, New York, 1977) p. 169.

    Google Scholar 

  13. B. V. BHISE, M. G. PATIL, M. B. DONGARE, S. R. SAWANT and S. A. PATIL, Ind. J. Pure Appl. Phys. 30 (1992) 385.

    Google Scholar 

  14. H. B. LAL, B. K. VERMA and V. R. YADAV, J. Mater. Sci. 17 (1982) 3317.

    Article  Google Scholar 

  15. V. R. YADAVA and H. B. LAL, Canad. J. Phys. 57 (1979) 1204.

    Google Scholar 

  16. A. B. NAIK, S. A. PATIL and J. I. PAWAR, Ind. J. Pure Appl. Phys. 27 (1989) 149.

    Google Scholar 

  17. S. A. PATIL, B. L. PATIL, S. R. SAWANT and R. N. PATIL, ibid. 31 (1993) 904.

    Google Scholar 

  18. B. V. BHISE, V. C. MAHAJAN, M. G. PATIL, S. D. LOTKE and S. A. PATIL, ibid. 33 (1995) 459.

    Google Scholar 

  19. A. A. GHANI, A. I. EATAH and A. A. MOHAMED, ICF-3, Japan (1980) p. 216.

  20. A. P. KOMAR, Bull. Acad. Sci. USSR Ser. Phys. 18 (1954) 122.

    Google Scholar 

  21. K. R. KRISHNA MURTHY, Ph.D. Thesis, IIT Madras, India, 1975.

  22. J. B. GOODENOUGH, Mater. Res. Bull. 8 (1973) 423.

    Article  Google Scholar 

  23. M. W. ZEMANSKY, “Heat and Thermodynamics” (McGraw Hill, New York, 1968) p. 460.

    Google Scholar 

  24. A. J. BOSMAN and H. J. VAN DALL, Adv. Phys. 19 (1970) 1.

    Google Scholar 

  25. F. SEITZ, D. TURNBALL and H. EHRENREICH, J. Appl Solid State Phys. 21 (1968) 193.

    Google Scholar 

  26. I. G. AUSTIN and N. F. MOTT, Adv. Phys. 18 (1969) 41.

    Google Scholar 

  27. N. F. MOTT and E. A. DAVIS, “Phonons and Polarons in Electronics Processing in Non-Crystalline Materials” (Clarendon Press, Oxford, 1971).

    Google Scholar 

  28. N. REZLESCU and E. CUCIUREANU, Phys. Stat. Sol. 3 (1970) 873.

    Google Scholar 

  29. KUNAL B. MODI and H. H. JOSHI, Ind. J. Phys. 76A(6) (2002) 543.

    Google Scholar 

  30. M. A. AHEMED, A. TAWFIK, M. K. EL NIMR and A. A. EL-HASEB, J. Mat. Sci. 10 (1991) 549.

    Google Scholar 

  31. A. B. DEVALE, Ph.D. Thesis, IISc Nagpur Uni., India, 1980.

  32. L. G. VAN UITERT, J. Chem. Phys. 23 (1955) 1883.

    Article  Google Scholar 

  33. M. A. AHMED, M. K. EL. NIMR, A. TAWFIK and A. M. EL. HASAB, Phys. Stat. Sol. (a) 123 (1991) 501.

    Google Scholar 

  34. S. S. BASHIKIRAV, A. B. LIBERMAN and V. V. PARFENOV, Inorg. Mater. 15 (1979) 404.

    Google Scholar 

  35. A. J. BOSMAN and C. CREVECOEUR, J. Phys. Chem. Solids 30 (1969) 1151.

    Article  Google Scholar 

  36. Idem., Phys. Rev. 144 (1966) 763.

    Article  Google Scholar 

  37. R. R. HEIKES, in “Thermoelectricity,” edited by R. R. Heikes and R. W. Ure (Wiley Interscience, NY, 1961) p. 45.

    Google Scholar 

  38. A. A. SAMOKHAVALOV and A. G. RUSTAMOV, Soviet Phys.- Solid State 6 (1953) 749.

    Google Scholar 

  39. F. J. MORIN, Phys. Rev. 93 (1953) 1195.

    Article  Google Scholar 

  40. K. L. CHOPRA, “Thin Film Phenomena” (MacGraw Hill Book Company, New York, 1969).

    Google Scholar 

  41. T. YAMASHIRO, Jap. J. Appl. Phys. 12 (1973) 148.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. B. MODI.

Rights and permissions

Reprints and permissions

About this article

Cite this article

PANDYA, M.P., MODI, K.B. & JOSHI, H.H. Study of conduction mechanism in aluminium and magnesium co-substituted lithium ferrite. J Mater Sci 40, 5223–5232 (2005). https://doi.org/10.1007/s10853-005-4416-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-005-4416-z

Keywords

Navigation