Skip to main content

Advertisement

Log in

Thermo-elastic properties of dense YSZ and porous Ni-ZrO2 monolithic and isotropic materials

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Attempts are made to correlate the structure and properties of dense and porous Yittria Stabilized Zirconia to establish optimal thermo-elastic properties for better performance at elevated temperatures. Temperature and compositional dependence of isotropic elastic bulk properties (Young's modulus, Poisson's ratio and Shear and Bulk moduli) are determined using the stiffness constants reported in the literature. Anisotropy of Yittria Stabilized Zirconia increases with composition of Yittria dosage in Zirconia. Optimal composition of 12 mole% Yittria stabilized Zirconia is slightly better than 8 mole% Yittria Stabilized Zirconia based on the improved thermo-elastic properties for better performance at higher temperature (RT-400°C). However 15.5 mole% YSZ seems to be more suitable from the view point of thermo-elastic performance at elevated temperatures (500–800°C). Polycrystalline properties predicted are within 5% error limits of the experimental values for Young's modulus of 12 mole% Yittria Stabilized Zirconia. Numerical prediction of Young's modulus of 12 mole% YSZ for 〈100〉 orientation is 362 GPa as compared to experimental value of 370 GPa reported in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. A. MEULENBERG, O. TELLER, U. FLESCH, H. P. BUCHKREMER and D. STOVER, J. Mater. Sci. 36 (13) (2001) 3189.

    Article  CAS  Google Scholar 

  2. R. WILKENHOENER, H. P. BUCHKREMER, D. STOLTEN and A. KOCH, ibid 36 (2001) 1775.

    Article  CAS  Google Scholar 

  3. A. SELUC and A. ATKINSON, ibid. 36 (2001) 1173.

    Article  Google Scholar 

  4. A. SELUC and A. ATKINSON, J. Am. Ceram. Soc. 83 (2000) 2029.

    Google Scholar 

  5. S. PRIMDAHL, B.F. SORENSON and M. MOGENSEN, ibid. 83 (2000) 489.

    Article  CAS  Google Scholar 

  6. B.F. SORENSON and S. PRIMDAHL, ibid. 33 (1998) 5291.

    Google Scholar 

  7. N. Q. MINH, ibid. 76 (3) (1993) 563.

    Article  CAS  Google Scholar 

  8. N. G. PACE, G. A. SAUNDERS, Z. SUMENGEN and J. S. THORP, ibid. 4 (12) (1969) 1106.

    CAS  Google Scholar 

  9. J. D. BUCKLEY and D. N. BRASKI, ibid. 50 (4) (1967) 220.

    Article  CAS  Google Scholar 

  10. H. K. KANDIL, J. D. GREINER and J. F. SMITH, ibid. 67 (5) (1984) 220.

    Article  Google Scholar 

  11. SHIVA GADAG, GANESH SUBBARAYAN andWILLIAM BARKER, Fractography of Monolithic and Multilayer Films on NiO/YSZ Substrates Used in Fuel Cells Applications.*Paper in submission.

  12. R. F. COOK and G. M. PHARR: Mechanical Properties of Ceramics in Structure and Properties of Ceramics, edited by R. W. Cahn, P. Haasen and E. Kramer, Materials Science and Technology, V11 by M. Swain, Chapter 7 (VCH Publishers Inc. printed in NY, USA 1994), p 3414.

    Google Scholar 

  13. Mechanical Behavior of Materials, Vol. I: Elasticity and Plasticity, edited by D. Francois, A. Pineau and A. Zaoui (Kluwer Academic, The Netherlands, 1998).

  14. Structural residual stress analysis by nondestructive methods, edited by V. Hauk (Elsevier, The Netherlands, 1997).

  15. S. P. S. BADWAL, Ceramic Superionic Conductors in Structure and Properties of Ceramics, edited by R.W. Cahn, P. Haasen, E. Kramer, Materials Science and Technology, V11 by M. Swain, Chapter 11 (VCH Publishers Inc. printed in FRG 1994), p568.

  16. S. P. S. BADWAL and F. T. CIACCHI, Key Engng. Mater. V48-50 (1990) 235.

    Google Scholar 

  17. V. I. ALEKSANDROV, G. E. VAL’YANO, B. V. LUKIN, V. V. OSIKO, A. E. RAUTBORT, V. M. TATARINTSEV and V. N. FILATOV, Izv. Akad. Nauk SSSR, Neorg. Mater. 12(2) (1976) 273.

    CAS  Google Scholar 

  18. SHIVA GADAG and GANESH SUBBARAYAN: “Thermo-mechanical Analysis of Sequential Stack of Solid Oxide Fuel Cells (PSOFC)”. Paper in preparation.

  19. R. N. THURSTON, Proc., IEEE 53 (1965)1320.

    Article  Google Scholar 

  20. M. FARLEY, J. S. THORP, J. S. ROSS and G. A. SAUNDERS, J. Mater. Sci. Lett. 7 (4) (1972) 475.

    Article  CAS  Google Scholar 

  21. T. HAILING and G. A. SAUNDERS, ibid. 1 (9) (1982)416.

    Article  CAS  Google Scholar 

  22. M. MORE, T. ABE, H. ITOH, O. YAMAMATHO, Y. TAKEDA and T. KAWAHARA, Solid State Ionics 74 (1994) 157.

    Article  Google Scholar 

  23. F. J. RITZERERT, H. M. YURI and R. V. MINER, J. Mater. Sci. 33 (1998) 5339.

    Article  Google Scholar 

  24. CAHN, HAASEN and KRAMER: Structure and Properties of Ceramics, edited by R.W. Cahn, P. Haasen, E. Kramer, Materials Science and Technology, V11 by M. Swain, Chapter 11, VCH Publishers Inc. printed in FRG (1994), p568.

  25. D. MUNZ and T. FETT (Eds.), “Ceramics”, Springer-verlag, (1999).

  26. R.W. RICE, (Ed.), “Porosity of Cermics”, Marcel Dekker, Inc., 1998.

  27. T. E. MATIKAS, P. KARPUR and S. SHAMASUNDER, J. Mater. Sci. 32 (4) (1997) 1093.

    Article  Google Scholar 

  28. N. RAMAKRISHNAN and V. S. ARUNACHALAM, ibid. 25 (1990) 3930.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganesh Subbarayan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gadag, S., Subbarayan, G. & Barker, W. Thermo-elastic properties of dense YSZ and porous Ni-ZrO2 monolithic and isotropic materials. J Mater Sci 41, 1221–1232 (2006). https://doi.org/10.1007/s10853-005-3660-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-005-3660-6

Keywords

Navigation