Skip to main content
Log in

Substantiating the role of phase bicontinuity and interfacial bonding in epoxy-silica nanocomposites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nanocomposites consisting of an epoxy network matrix and a silica reinforcing phase were produced from a resin mixture functionalized with alkoxysilane coupling agents. Particulate nanocomposites were obtained by dispersing silica-organosol particles in the resin, while bicontinuous phase nanocomposirtes were obtained by the in-situ hydrolysis and condensation of tetraethoxysilane containing minor amounts of γ-glycidoxyl trimethoxysilane. Functionalization of the epoxy resin with an amine silane coupling agent was found to be more effective in aiding the dispersion of silica sol particles in the resin than the corresponding resin functionalized with a mercaptan silane coupling agent. Similar differences in the efficiency of coupling agent grafted on to the epoxy resin were observed for bicontinuous phase nanocomposites. The amine silane functionalization produces denser silica domains, which results in a higher rubber-plateau modulus and higher resistance to solvent penetration. The study also showed that the particulate nanocomposites are very ineffective in improving the solvent resistance of the base resin, even when the resin is grafted with a very efficient amine silane coupling agent, which promotes interfacial bonding. The different types of morphology were characterized by transmission electron microscopy and small angle X-ray scattering analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. MASCIA, Trends in Polymer Science 3 (1995) 61.

    CAS  Google Scholar 

  2. M. R. LANDRY, B. K. COLTRAN and C. J. T. LANDRY, J. Polym. Sci. Polym Phys. 33 (1995) 637.

    Article  CAS  Google Scholar 

  3. H. H. WANG, B. ORLER and G. L. WILKES, Macromolecules 20 (1987) 1322.

    Article  Google Scholar 

  4. B. M. NOVAK, Adv. Mat. 5 (1993) 43.

    Article  Google Scholar 

  5. J. J. FITZGERALD, C. J. T. LANDRY and J. M. POCHAN, Macromolecules 23 (1992) 3715.

    Article  Google Scholar 

  6. A. KIOUL, L. MASCIA, J. Non-Cryst. Solids 175 (1994) 169.

    Article  CAS  Google Scholar 

  7. L. MASCIA and A. KIOUL, Polymer 36 (1995) 3649.

    Article  CAS  Google Scholar 

  8. Y. MORIKAWA, M. IYOKU, M. KAKIMOTO, Y. IMAI, Polym. J. 24 (1992) 107.

    Article  CAS  Google Scholar 

  9. Z. AHMAD, S. WANG and J. E. MARK, Polym. Prep. (Am. Chem. Soc., Div. Polym. Sci.) 34(2) (1993) 745.

    CAS  Google Scholar 

  10. J. F. CHEN, Z. AHMAD, S. WANG, J. E. MARK and F. E. ARNOLD, in “Hybrids Organic- Inorganic Composites” edited by J. E. Mark, C. Y-C Lee and P. A. Bianconi, (ACS Symposium Series 585, 1995) Chapter 23, p. 297.

  11. E. P. BLACK, T. A. ULIBARRI, G. BEAUCAGE, D. W. SCHAEFER, R. A. ASSINK, D. F. BERGSTROM, P. A. GIWA-AGBOMEIRELE and G. T. BURNS, Ibid Chapter 18, pp 235-246.

  12. J. WEIN, J. M. BREINER, J. E. MARK, Polymer 39 (1998) 5483.

    Article  Google Scholar 

  13. S. S. SOUSA, A. N. FALCAO, M. CARRAPICO, F. M. MARCAGA, I. G. CARVALHO, S. SALVADO and J. TEIXEIRA, J. Sol-Gel Science and Tech. 26 (2003) 345.

    Article  Google Scholar 

  14. J. E. ASHTON, J. C. HALPIN, P. H. PETIT, Primer on Composite Analysis (Tecnicon Publishing Co. Stanford, Conn. 1969) Chapter 5.

  15. L. MASCIA and T. TANG, J. Mat. Chem. 8 (1998) 2417.

    Article  CAS  Google Scholar 

  16. L. PREZZI and L. MASCIA, Advances in Polymer Technology 24 (2005) 91.

    Article  CAS  Google Scholar 

  17. L. PREZZI, Ph. D. Thesis, Loughborough University, 2004.

  18. C. J. BRINKER and G. W. SCHERER, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, Academic Press, London (1996).

    Google Scholar 

  19. A. KASGOZ and Y. ABE, J. Sol-Gel Sci. and Tech. 17 (2000) 127.

    Article  Google Scholar 

  20. G. L. WILKES, B. ORLER and H. H. WANG, Polymer Preprints 26(2) (1985) 300.

    CAS  Google Scholar 

  21. L. MATEJEIKA, K. DUSEK, J. PLETSIL, J. KRIZ and F. LEDNICKY, Polymer 40 (1998) 171.

    Article  Google Scholar 

  22. B. BAUER, W. LIU, C. JACKSON, J. BARNES, Polymers for Advanced Technologies 7 (1995) 333.

    Article  Google Scholar 

  23. C. M. HANSEN and L. JUST, Ind. Eng. Chem. Res. 40 (2001) 21.

    Article  CAS  Google Scholar 

  24. C. M. HANSEN, Polymer Degradation and Stability 77 (2002) 43.

    Article  CAS  Google Scholar 

  25. A. F. M. BARTON, Handbook of Solubility Parameters (CRC Press, 1971).

  26. L. MASCIA, L. PREZZI and M. LAVORGNA, Polym. Eng. Sci. 45 (2005) 1039.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mascia, L., Prezzi, L. & Haworth, B. Substantiating the role of phase bicontinuity and interfacial bonding in epoxy-silica nanocomposites. J Mater Sci 41, 1145–1155 (2006). https://doi.org/10.1007/s10853-005-3653-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-005-3653-5

Keywords

Navigation