Skip to main content
Log in

Single fibre pullout tests on auxetic polymeric fibres

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A novel route for production of auxetic fibres has been adapted from conventional melt extrusion techniques. These fibres were reproduced, characterised and tested, for the first time, to assess the potential of auxetic fibres as reinforcements in composite materials. Initial experimental work has included the embedding of single fibres in modified epoxy resin. Auxetic fibre specimens were then compared with conventional fibre specimens through a specially designed fibre pullout testing procedure. The auxetic specimens displayed superior anchoring properties. The average maximum force at de-bonding of the auxetic fibres (0.95 N) was observed to be over 100% higher than that for conventional ones (0.44 N) and the average energy required to fully extract the auxetic fibre from the modified resin was 8.3 mJ while the conventional fibre required only 2.5 mJ on average. The results indicate that composites employing auxetic fibres as the reinforcement phase will exhibit enhanced resistance to failure due to fibre pullout.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. R. Veronda and R. A. Westmann, J. Biomech. 3 (1970) 111.

    Article  PubMed  Google Scholar 

  2. J. L. Williams and J. L. Lewis, Trans. ASME, J. Biomech. Eng. 104 (1982) 50.

    Google Scholar 

  3. D. J. Gunton and G. A. Saunders, J. Mater. Sci. 7 (1972) 1061.

    Article  Google Scholar 

  4. R. Lakes, Science 235 (1987) 1038.

    Google Scholar 

  5. K. E. Evans, Chem. Ind. (1990) 654.

  6. K. L. Alderson, A. F. Fitzgerald and K. E. Evans, J. Mater. Sci. 35 (2000) 4039.

    Article  Google Scholar 

  7. B. D. Caddock and K. E. Evans, J Phys. D: Appl. Phys. 22 (1989) 1877.

    Article  Google Scholar 

  8. K. E. Evans and K. L. Ainsworth, in International Patent appl. no: WO 91/01210. Publication date 01/02/91.

  9. A. P. Pickles, R. S. Webber, K. L. Alderson, P. J. Neale and K. E. Evans, J. Mater. Sci. 30 (1995) 4059.

    Article  Google Scholar 

  10. K. L. Alderson, A. P. Kettle, P. J. Neale, A. P. Pickles and K. E. Evans, ibid. 30 (1995) 4069.

    Article  Google Scholar 

  11. P. J. Neale, A. P. Pickles, K. L. Alderson and K. E. Evans, ibid. 30 (1995) 4087.

    Article  Google Scholar 

  12. A. P. Pickles, K. L. Alderson and K. E. Evans, Polym. Eng. Sci. 36(5) (1996) 636.

    Article  Google Scholar 

  13. K. L. Alderson and V. R. Simkins, UK Patent appl. No 9905145.0 (1999).

    Google Scholar 

  14. K. L. Alderson, A. Alderson, G. Smart, V. R. Simkins and P. J. Davies, Plast, Rubber Compos Process Appl 31(8) (2002) 344.

    Google Scholar 

  15. K. L. Alderson, V. R. Simkins and A. Alderson, in proceedings of ECCM9 Brighton, (UK, 4–7th June 2000).

  16. E. Betz Report, No SETEC-ME 79–34 University of Pittsburgh, (Pittsburgh PA, 1979).

  17. J. A. Nairn, C. H. Liu, D. A. Mendels and S. Zhandarov, in Proceedings of 16th Ann. Tech Conf. Of the Amer. Soc. Composites, VPI, Blacksburg VA, Sept 9–12, 2001.

  18. B. P. Miller, P. Muri and L. Rebenfield, Comp. Sci Tech. 28 (1987) 17.

    Article  Google Scholar 

  19. J. A. Nairn, Ad Compos Lett 6 (2000) 373.

    Google Scholar 

  20. W. Beckert and B. Lauke, Comp. Sci. Tech. 57 (1997) 1689.

    Article  Google Scholar 

  21. E. Pisanova, S. Zhandarov and E. Mäder, Comp. Part A 32 (2001) 425.

    Article  Google Scholar 

  22. C. L. So and R. J. Young, Composites Part A 32 (2001) 445.

    Article  Google Scholar 

  23. C. Atkinson, J. Avila, E. Betz and R. E. Smelser, J. Mech. Phys. Solids 3 (1982) 97.

    Article  Google Scholar 

  24. C. Marotzke, Comp. Sci Tech. 50 (1994) 393.

    Article  Google Scholar 

  25. V. R. Simkins, P. J. Davies and K. L. Alderson, Paper P3, Int. Conf. Deformation, Yield and Fracture of Polymers, Churchill College, Cambridge, 10-13/4/2000.

  26. Ciba data sheet-Araldite LY 5082 resin, Araldite HY 5083 hardener. June 1992.

  27. G. Desarmot and J. P. Favre, Comp. Sci. Tech. 42 (1991) 151.

    Article  Google Scholar 

  28. P. S. Chua and M. R. Piggott, ibid., 22 (1985) 107.

    Article  Google Scholar 

  29. M. R. Piggott and D. Andison, J. Reinf. Plast. Comp. 6 (1987) 290.

    Google Scholar 

  30. L. S. Penn and S. M. Lee, Fib. Sci. Tech. 17 (1982) 91.

    Article  Google Scholar 

  31. A. Takaku and R. G. C. Arridge, J. Phys. D: Appl. Phys. 6 (1973) 2038.

    Article  Google Scholar 

  32. J. B. Choi and R. S. Lakes, Cell. Polymers 14 (1991).

  33. D. W. Overaker, A. M. Cuitino and N. A. Langrana, Mech of Mater 29 (1998) 43.

    Article  Google Scholar 

  34. S. V. Shilko and A. I. Stolyarov, J. Friction and Wear 4 (1996) 23.

    Google Scholar 

  35. K. E. Evans and A. Alderson, Adv. Mater. 9 (2000) 617.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Alderson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simkins, V.R., Alderson, A., Davies, P.J. et al. Single fibre pullout tests on auxetic polymeric fibres. J Mater Sci 40, 4355–4364 (2005). https://doi.org/10.1007/s10853-005-2829-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-005-2829-3

Keywords

Navigation