Skip to main content
Log in

Stress stability and thermo-mechanical properties of reactively sputtered alumina films

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The stability of residual stress inherent on deposition in reactively sputtered alumina films is studied during thermal cycling and annealing, simulating temperature excursions experienced by the films during device fabrication and subsequent operation. Increasing the magnitude of substrate bias applied during deposition acts to reduce the amount of argon incorporated in the films; more incorporated argon corresponds to smaller values of modulus and hardness and a larger coefficient of thermal expansion (CTE). Large, irreversible changes in film stress develop on heating, acting to decrease the compressive residual stress of films deposited on silicon substrates to a smaller, equilibrium value, whereas films deposited on Al2O3-TiC substrates behave differently. Thermal cycling and annealing have little effect on the modulus and CTE, but the hardness increases significantly and the threshold load for indentation crack initiation decreases precipitously during heat treatment. Possible mechanisms of irreversible stress development and mechanical property modifications are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. PARFITT, M. GOLDINER, J. W. JONES and G. S. WAS, J. Appl. Phys. 77 (1995) 3029.

    Article  CAS  Google Scholar 

  2. J. PROOST and F. SPAEPEN, ibid. 91 (2002) 204.

    CAS  Google Scholar 

  3. R. S. NOWICKI, J. Vac. Sci. Technol. 14 (1977) 127.

    Article  CAS  Google Scholar 

  4. P. VUORISTO, T. MÄNTYLÄ, P. KETTUNEN and R. LAPPALAINEN, Thin Solid Films 204 (1991) 297.

    Article  CAS  Google Scholar 

  5. K. KOSKI, J. HÖLSÄ and P. JULIET, ibid. 339 (1999) 240.

    Article  CAS  Google Scholar 

  6. B. J. H. STADLER, M. OLIVERIA and L. O. BOUTHILLETTE, J. Am. Ceram. Soc. 78 (1995) 3336.

    Article  CAS  Google Scholar 

  7. K. K. SHIH and D. B. DOVE, J. Vac. Sci. Technol. A 12 (1994) 321.

    Google Scholar 

  8. P. VUORISTO, T. MÄNTYLÄ and P. KETTUNEN, J. Mater. Sci. 27 (1992) 4985.

    Article  CAS  Google Scholar 

  9. M. JIANG, S. HAO and R. KOMANDURI, Appl. Phys. A 77 (2003) 923.

    Google Scholar 

  10. A. ALFOQAHA and K. YOUNG, J. Appl. Phys. 93 (2003) 6561.

    Article  CAS  Google Scholar 

  11. W. YAN, ibid. 91 (2002) 7571.

    CAS  Google Scholar 

  12. W. W. SCOTT and B. BHUSHAN, ibid. 91 (2002) 8328.

    CAS  Google Scholar 

  13. C. A. ROSS, J. Vac. Sci. Technol. A 14 (1996) 2511.

    Google Scholar 

  14. J. H. KIM and K. W. CHUNG, J. Appl. Phys. 83 (1998) 5831.

    CAS  Google Scholar 

  15. R. A. GARDNER, P. J. PETERSON and T. N. KENNEDY, J. Vac. Sci. Technol. 14 (1977) 1139.

    Article  CAS  Google Scholar 

  16. J. THURN and R. F. COOK, J. Mater. Sci. 39 (2004) 4799.

    CAS  Google Scholar 

  17. G. G. STONEY, Proc. R. Soc. London A 82 (1909) 172.

    Google Scholar 

  18. W. A. BRANTLEY, J. Appl. Phys. 44 (1973) 534.

    Article  CAS  Google Scholar 

  19. SPC Report for Material AC-72, Sumitomo Special Metals Co., Ltd. (2003).

  20. W. C. OLIVER and G. M. PHARR, J. Mater. Res. 7 (1992) 1564.

    CAS  Google Scholar 

  21. R. B. ROBERTS, J. Phys. D 14 (1981) L163.

    Article  CAS  Google Scholar 

  22. Y. SUN, T. BELL and S. ZHENG, Thin Solid Films 258 (1995) 198.

    Article  CAS  Google Scholar 

  23. J. L. HAY, M. E. O'HERN and W. C. OLIVER, in Materials Research Society Symposium Proceedings, edited by N. R. Moody, W. W. Gerberich, S. P. Baker and N. Burnham (Materials Research Society, Warrendale, PA, 1998) Vol. 522, p. 27.

    Google Scholar 

  24. C. S. BHATIA, G. GUTHMILLER and A. M. SPOOL, J. Vac. Sci. Technol. A 7 (1989) 1298.

    Google Scholar 

  25. T. HANADA, H. FURUYA, S. TANABE and N. SOGA, J. Non-Cryst. Solids 152 (1993) 188.

    Article  CAS  Google Scholar 

  26. T. C. CHOU, T. G. NIEH, S. D. MCADAMS and G. M. PHARR, Scripta Metall. et Mater. 25 (1991) 2203.

    CAS  Google Scholar 

  27. J. THURN and R. F. COOK, J. Mater. Sci. 39 (2004) 4809.

    CAS  Google Scholar 

  28. C. TEGELER, R. SPAN and W. WAGNER, J. Phys. Chem. Ref. Data 28 (1999) 779.

    CAS  Google Scholar 

  29. L. W. FINGER, R. M. HAZEN, G. ZOU, H. K. MAO and P. M. BELL, Appl. Phys. Lett. 39 (1981) 892.

    Article  CAS  Google Scholar 

  30. J. THURN and R. F. COOK, J. Mater. Res. 19 (2004) 124.

    Article  CAS  Google Scholar 

  31. D. J. MORRIS, S. B. MYERS and R. F. COOK, J. Mater. Sci. 39 (2004) 2399.

    Article  CAS  Google Scholar 

  32. S. S. CHIANG, D. B. MARSHALL and A. G. EVANS, J. Appl. Phys. 53 (1982) 298.

    CAS  Google Scholar 

  33. R. F. COOK and G. M. PHARR, J. Am. Ceram. Soc. 73 (1990) 787.

    CAS  Google Scholar 

  34. J. A. THORNTON and J. CHIN, Am. Ceram. Soc. Bull. 56 (1977) 504.

    CAS  Google Scholar 

  35. P. BRÜESCH, R. KÖTZ, H. NEFF and L. PIETRONERO, Phys. Rev. B 29 (1984) 4691.

    Google Scholar 

  36. H. M. CHAN and B. R. LAWN, J. Am. Ceram. Soc. 71 (1988) 29.

    CAS  Google Scholar 

  37. R. F. COOK and L. M. BRAUN, J. Mater. Sci. 29 (1994) 2192.

    CAS  Google Scholar 

  38. A. ARORA, D. B. MARSHALL, B. R. LAWN and M. V. SWAIN, J. Non-Cryst. Solids 31 (1979) 415.

    Article  CAS  Google Scholar 

  39. J. THURN, unpublished.

  40. Z. L. LIAU and T. T. SHENG, Appl. Phys. Lett. 32 (1978) 716.

    Article  CAS  Google Scholar 

  41. A. PRUYMBOOM, P. BERGHUIS, P. H. KES and H. W. ZANDBERGEN, ibid. 50 (1987) 1645.

    Article  CAS  Google Scholar 

  42. L. HULTMAN, J.-E. SUNDGREN, L. C. MARKERT and J. E. GREENE, J. Vac. Sci. Technol. A 7 (1989) 1187.

    Google Scholar 

  43. G. FARACI, S. LA ROSA, A. R. PENNISI, S. MOBILIO and G. TOURILLON, Phys. Rev. B 43 (1991) 9962.

    Google Scholar 

  44. P. LAMPARTER and R. KNIEP, Physica B 234–236 (1997) 405.

    Google Scholar 

  45. G. GUTIÉRREZ and B. JOHANSSON, Phys. Rev. B 65 (2002) 104202.

    Google Scholar 

  46. A. J. BOURDILLON, S. M. EL-MASHRI and A. J. FORTY, Philos. Mag. A 49 (1984) 341.

    Google Scholar 

  47. H. L. WANG, C. H. LIN and M. H. HON, Thin Solid Films 310 (1997) 260.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hughey, M.P., Cook, R.F. & Thurn, J. Stress stability and thermo-mechanical properties of reactively sputtered alumina films. J Mater Sci 40, 6345–6355 (2005). https://doi.org/10.1007/s10853-005-2070-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-005-2070-0

Keywords

Navigation