Skip to main content
Log in

Effects of CO2 shielding gas additions and welding speed on GTA weld shape

  • Proceedings of the IV International Conference High Temperature Capillarity
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Gas tungsten arc (GTA) welding with deep penetration for high efficiency has long been of concern in industry. Experimental results showed that the small addition of carbon dioxide to the argon shielding gas produces an increase in the weld metal oxygen content, which is one of the compositional variables that strongly influence the Marangoni convection on the pool surface and ultimately change the weld pool shape. An inward Marangoni convection on the weld pool occurs, and hence a narrow and deep weld pool forms when the weld metal oxygen content is over the critical value of 100 ppm. When lower than this value, the weld shape becomes wide and shallow. A heavy oxide layer forms in the periphery area on the pool surface when the CO2 concentration in the shielding gas is over 0.6%. This continuous heavy oxide layer becomes a barrier for oxygen absorption into the molten pool, and also changes the convection mode on the pool surface. A higher welding speed decreases the heat input and temperature gradient on the pool surface, which weakens the Marangoni convection on the liquid surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. C. LUGWIG, Weld. Res. Suppl. 36 (1957) 335s.

    Google Scholar 

  2. B. E. PATON, Avtom. Svarka. 6 (1974) 1.

    Google Scholar 

  3. W. S. BENNETT and G. S. MILLS, Weld. J. 53 (1974) 548s.

    Google Scholar 

  4. W. F. SAVAGE, E. F. NIPPES and G. M. GOODWIN, Weld. J. 56 (1977) 126s.

    Google Scholar 

  5. C. R. HEIPLE and J. R. ROPER, Weld. J. 60 (1981) 143s.

    Google Scholar 

  6. Y. TAKEUCHI, R. TAKAGI and T. SHINODA, Weld. J. 71 (1992) 283s.

    Google Scholar 

  7. M. TANAKA, T. SHIMIZU, H. TERASAKI, M. USHIO, F. KOSHI-ISHI and C. L. YANG, Sci. Tech. Weld. Join. 5 (2000) 397.

    Article  CAS  Google Scholar 

  8. P. J. MODENESI, E. R. APOLINARIO and I. M. PEREIRA, J. Mater. Proc. Tech. 99 (2000) 260.

    Article  Google Scholar 

  9. M. KUO, Z. SUN and D. PAN, Sci. Tech. Weld. Join. 6 (2001) 17.

    Article  Google Scholar 

  10. D. FAN, R. ZHANG, Y. GU and M. USHIO, Trans. JWRI. 30 (2001) 35.

    CAS  Google Scholar 

  11. D. S. HOWSE and W. LUCAS, Sci. Tech. Weld. Join. 5 (2000) 189.

    Article  CAS  Google Scholar 

  12. C. R. HEIPLE and J. R. ROPER, Weld. J. 61 (1982) 97s.

    Google Scholar 

  13. P. C. J. ANDERSON and R. WIKTOROWICZ, Weld. Met. Fabri. 64 (1996) 108.

    CAS  Google Scholar 

  14. W. LUCAS and D. HOWSE, Weld. Met. Fabri. 64 (1996) 11.

    CAS  Google Scholar 

  15. D. D. SCHWEMMER, D. L. OLSON and D. L. WILLIAMSON, Weld. J. 58 (1979) 153s.

    Google Scholar 

  16. F. LIU, S. LIN, C. YANG and L. WU, Trans. China Weld. Inst. 23 (2002) 1.

    Google Scholar 

  17. T. PASKELL, C. LUNDIN and H. CASTNER, Weld. J. 76 (1997) 57.

    CAS  Google Scholar 

  18. F. LIU, S. LIN, C. YANG and L. WU, Trans. China Weld. Inst. 23 (2002) 5.

    Google Scholar 

  19. Y. WANG and H. L. TSAI, Metall. Mater. Trans. 32B (2001) 501.

    CAS  Google Scholar 

  20. S. P. LU, H. FUJII, H. SUGIYAMA and K. NOGI, Metall. Mater. Trans. 34A (2003) 1901.

    Article  CAS  Google Scholar 

  21. N. N. BAD’YANOV, Avtom. Svarka. 1 (1975) 75.

    Google Scholar 

  22. C. R. HEIPLE and P. BURGARDT, Weld. J. 64 (1985) 159s.

    Google Scholar 

  23. S. P. LU, H. FUJII, H. SUGIYAMA, M. TANAKA and K. NOGI, ISIJ. Int. 43 (2003) 1590.

    Article  CAS  Google Scholar 

  24. S. M. GUREVICH and V. N. ZAMKOV, Avtom. Syarka. 12 (1966) 13.

    Google Scholar 

  25. A. PAUL and T. DEBROY, Metall Trans. 19B (1988) 851.

    CAS  Google Scholar 

  26. T. ZACHARIA, S. A. DAVID, J. M. VITEK and T. DEBROY, Weld J. 68 (1989) 499s.

    Google Scholar 

  27. T. ZACHARIA, S. A. DAVID, J. M. VITEK and T. DEBROY, Weld J. 68 (1989) 510s.

    Google Scholar 

  28. H. TAIMATSU, K. NOGI and K. OGINO, J. High. Temp. Soc. 18 (1992) 14.

    CAS  Google Scholar 

  29. S. P. LU, H. FUJII, H. SUGIYAMA, M. TANAKA and K. NOGI, Mater. Trans. 43 (2002) 2926.

    Article  CAS  Google Scholar 

  30. T. KUWANA and Y. SATO, Trans. Japan Weld. Soc. 17 (1986) 124.

    CAS  Google Scholar 

  31. T. KUWANA and Y. SATO, Trans. Japan Weld. Soc. 7 (1989) 43.

    CAS  Google Scholar 

  32. T. KUWANA and Y. SATO, Trans. Japan Weld. Soc. 7 (1989) 49.

    CAS  Google Scholar 

  33. Y. SATO and T. KUWANA, ISIJ Int. 35 (1995) 1162.

    Article  CAS  Google Scholar 

  34. M. J. MCNALLAN and T. DEBROY, Metall. Trans. 22B (1991) 557.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shanping, L., Hidetoshi, F. & Kiyoshi, N. Effects of CO2 shielding gas additions and welding speed on GTA weld shape. J Mater Sci 40, 2481–2485 (2005). https://doi.org/10.1007/s10853-005-1979-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-005-1979-7

Keywords

Navigation