Skip to main content
Log in

Strain-amplitude dependent fatigue resistance of low-alloy pressure vessel steels in high-temperature water

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Low cycle fatigue resistance of low-alloy pressure vessel steels was investigated in 561 K air and water over a wide strain amplitude range. It was found that fatigue resistance of the steels was enhanced in high-temperature water relative to high-temperature air under the low strain amplitude conditions (<0.3%) or in the high cycle regime (>2 × 104 cycles), while it was remarkably degraded in high-temperature water under the higher strain amplitude conditions. Fatigue cracking and fractographic features suggested that effects of hydrogen be involved in the present corrosion fatigue process in high-temperature water. Possible environmentally assisted cracking mechanisms are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. KONDO, T. KIKUYAMA, H. NAKAJIMA, M. SHINDO and R. NAGASAKI, Nucl. Eng. Des. 17 (1971) 170.

    Google Scholar 

  2. H. HÄNNINEN, K. TÖRRÖNEN, M. KEMPPAINEN and S. SALONEN, Corros. Sci. 23 (1983) 663.

    Google Scholar 

  3. N. NAGATA, S. SATO and Y. KATADA, ISIJ Intern. 31 (1991) 106.

    Google Scholar 

  4. M. HIGUCHI, K. IIDA and Y. ASADA, ASTM STP 1298 (1997) 216.

    Google Scholar 

  5. O. K. CHOPRA and W. J. SHACK, Nucl. Eng. Des. 184 (1998) 49.

    Google Scholar 

  6. S. G. LEE and I. S. KIM, J. Press. Vess. Technol. Trans. ASME 123 (2001) 173.

    Google Scholar 

  7. J. CONGLETON, E. A. CHARLES and G. SUI, Corros. Sci. 43 (2001) 2265.

    Google Scholar 

  8. O. K. CHOPRA and W. J. SHACK, ASME PVP 453 (2003) 71.

    Google Scholar 

  9. A. HIRANO, M. YAMAMOTO, K. SAKAGUCHI, T. SHOJI and K. IIDA, J. Press. Vess. Technol. Trans. ASME 125 (2003) 403.

    Google Scholar 

  10. X. Q. WU and Y. KATADA, J. Mater. Sci. 39 (2004) 2519.

    Google Scholar 

  11. Idem., Mater. Sci. Eng. 379A (2004) 58.

    Google Scholar 

  12. S. LICHT, J. Electrochem. Soc. 135 (1988) 2971.

    Google Scholar 

  13. G. WRANGLEN, Corros. Sci. 14 (1974) 331.

    Google Scholar 

  14. J. H. BULLOCH, Int. J. Press. Vess. Piping 56 (1993) 149.

    Google Scholar 

  15. X. Y. ZHOU, J. CONGLETON and A. BAHRALOLOOM, Corrosion 54 (1998) 898.

    Google Scholar 

  16. Y. KATADA and K. KUROSAWA, ASME PVP 386 (1999) 249.

    Google Scholar 

  17. X. Q. WU and I. S. KIM, Mater. Sci. Eng. 348A (2003) 309.

    Google Scholar 

  18. H. HÄNNINEN, W. CULLEN and M. KEMPPAINEN, Corrosion 46 (1990) 563.

    Google Scholar 

  19. J. KUNIYA, H. ANZAI and I. MASAOKA, ibid. 48 (1992) 419.

    Google Scholar 

  20. F. P. FORD, ibid. 52 (1996) 375.

    Google Scholar 

  21. J. D. ATKINSON and J. YU, Fat. Fract. Eng. Mater. Struct. 20 (1997) 1.

    Google Scholar 

  22. P. M. SCOTT and A. E. TRUSWELL, J. Press. Vess. Technol. Trans. ASME 105 (1983) 245.

    Google Scholar 

  23. P. S. MAIYA, ibid. 109 (1987) 116.

    Google Scholar 

  24. P. M. SCOTT, A. E. TRUSWELL and S. G. DRUCE, Corrosion 40 (1984) 350.

    Google Scholar 

  25. D. J. GAVENDA, P. R. LUEBBERS and O. K. CHOPRA, Fat. Fract. J. 350 (1997) 243.

    Google Scholar 

  26. O. K. CHOPRA and W. J. SHACK, J. Press. Vess. Technol. Trans. ASME 121 (1999) 49.

    Google Scholar 

  27. A. SAXENA, in “Nonlinear Fracture Mechanics for Engineer” (CRC Press, New York, 1998) p. 303.

    Google Scholar 

  28. S. SURESH, G. F. ZAMISKI and R. O. RITCHIE, Metall. Trans. 12A (1981) 1435.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Q. Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, X.Q., Katada, Y. Strain-amplitude dependent fatigue resistance of low-alloy pressure vessel steels in high-temperature water. J Mater Sci 40, 1953–1958 (2005). https://doi.org/10.1007/s10853-005-1216-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-005-1216-4

Keywords

Navigation