Skip to main content
Log in

In-situ TEM observations of the coarsening of a nanolamellar structure in a cobalt based magnetic alloy

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The thermal stability and coarsening of nanostructures is of both scientific interest and of engineering significance in order to produce thermally stable nanomaterials. Real time observations were carried out using ultra high vacuum (UHV) in situ TEM to investigate the coarsening process of a highly modulated nanolamellar structure obtained by crystallization of a Co based Co65Si15B14Fe4Ni2 amorphous magnetic alloy. The coarsening process consisted of three steps: (a) precipitation of spherical fine precipitates; (b) continuous coarsening of the nanolamellar structure at the surface and precipitation at the grain boundaries; and (c) formation of a stable multiphase structure. Due to surface effects, continuous coarsening of nanolamellar structure was observed during in-situ annealing; this mechanism was different from that of the coarsening process found during conventional annealing. Discontinuous coarsening from grain boundaries, which dominates the coarsening process in the conventional annealing of bulk sample, also occurred in in-situ annealing of thin sample. The driving force for coarsening of the nanolamellar structure from interlamellar interfaces, grain boundaries and surfaces is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. GLEITER, Acta Mater. 48 (2000) 1.

    Google Scholar 

  2. J. W. MARTIN, R. D. DOHERTY and B. CANTOR, “Stability of Microstructure in Metallic Systems”, 2nd ed. (Cambridge University Press, 1997) p. 219.

  3. J. C. ZHAO and M. R. NOTIS, Acta Mater. 46 (1998) 4203.

    Google Scholar 

  4. G. SHARMA, R. V. RAMANUJAN and G. P. TIWARI, ibid. 48 (2000) 875.

    Google Scholar 

  5. S. VEPREK and M. JILEK, Vacuum 67 (2002) 443.

    Article  Google Scholar 

  6. A. L. GREER, in Proc. 22nd Risø Inter. Symp. Mater. Sci.: Science of Metastable and Nanocrystalline Alloys, Structure, Properties and Modeling, edited by A. R. Dinesen, M. Eldrup, D. Juul Jensen, S. Linderoth, T. B. Pedersen and N. H. Pryds, A. Schrøder Pedersen and J. A. Wert, (Denmark, 2001) p. 461.

  7. J. LEE, F. ZHOU and K. H. CHUNG, Metall. Mater. Trans. A 32 (2001) 3109.

    Google Scholar 

  8. F. LIU and R. KIRCHHEIM, J. Cryst. Growth 264 (2004) 385.

    Google Scholar 

  9. H. TANIMOTO, P. FARBER, R. WÜRSCHUM, R. Z. VALIEV and H. E. SCHAEFER, Nanostruct. Mater. 12 (1999) 681.

    Google Scholar 

  10. H. F. LI and R. V. RAMANUJAN, Intermetallics 12 (2004) 803.

    Google Scholar 

  11. Idem., Mater. Sci. Eng. A 375–377 (2004) 1087.

    Google Scholar 

  12. N. NISHIYAMA, M. MATSUSHITA and A. INOUE, Scripta Mater. 44 (2001) 1261.

    Google Scholar 

  13. L. TAN and W. C. CRONE, ibid. 50 (2004) 819.

    Google Scholar 

  14. S. X. ZHOU, Y. G. WANG, J. H. ULVENSØEN and R. HØIER, IEEE Trans. Magn. 30 (1994) 4815.

    Google Scholar 

  15. F. ZHOU, K. Y. HE and K. LU, Nanostruct. Mater. 9 (1997) 387.

    Google Scholar 

  16. S. C. BYEON, C. K. KIM, K. S. HONG and R. C. O’HANDLEY, Mater. Sci. Eng. B 56 (1999) 58.

    Google Scholar 

  17. R. V. RAMANUJAN, P. J. MAZIASZ and C. T. LIU, Acta Mater. 44 (1996) 2611.

    Google Scholar 

  18. P. VILLARS, A. PRINCE and H. OKAMOTO, “Handbook of Ternary Alloy Phase Diagrams” (computer file) (ASM international, Materials Park, 1997).

    Google Scholar 

  19. D. A. PORTER and K. E. EASTERLING, “Phase Transformations in Metals and Alloys”, 2nd ed. (Chapman & Hall, 1992).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H.F., Foo, Y.L. & Ramanujan, R.V. In-situ TEM observations of the coarsening of a nanolamellar structure in a cobalt based magnetic alloy. J Mater Sci 40, 1901–1907 (2005). https://doi.org/10.1007/s10853-005-1209-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-005-1209-3

Keywords

Navigation