Skip to main content
Log in

Effect of combined doping (y3 + + fe3 +) on structural features of nanodispersed zirconium oxide

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Fully stabilized zirconium dioxide is widely used. One of the basic requirements to this material is the thermal stability of the structure. The most effective stabilizer for zirconium oxide is yttrium oxide. However, the structure of Y-ZrO2 degraded at low temperature. Partial substitution of Fe3 + for Y3+ decreases both the crystallization and sintering temperature of zirconia ceramic.

The aim of present work is the investigation of structural peculiarities of zirconium oxide stabilized by combined dopant depending on chemical composition, synthesis conditions and heat treatment.

The polymorphic composition of a ZrO2-based materials has been determined in series of samples that correspond to the formula [1−(x+y)]ZrO2xY2O3yFe2O3 in the temperature range 620–1570 K. It has been found that at the same molar ratio ZrO2 : doping oxides, the degree of ZrO2 stabilization increases, and the low-temperature degradation process is retarded by the partial substitution of Fe3 + for Y3+. Nonequivalent sites of Fe3 + ions have been identified: two with octahedral coordination for CPH and three with octa-, penta- and tetrahedral coordination for SPH. The possibility of cluster distribution of Fe3+ ions and the dependence of the number of vacancies on synthesis conditions have been shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. V. DEDOV, V. A. KONASOV, V. A. MATYUKHA and A. I. SOLOVYOV, “Materials and Nanostructures: Production, Properties, Applications,” in: Proceedings of An Interregional Conference with Foreign Participants (Krasnoyarsk, 1996) p. 126.

  2. O. VASYLKIV and Y. SAKKA, J. Amer. Ceram. Soc. 84(11) (2001) 2489.

    Google Scholar 

  3. V. V. VIKTOROV and A. A. FOTIEV, Inorg. Mater. 29(9) (1993) 1254.

    Google Scholar 

  4. F. F. LANGE, G. L. DUNLOP and B. I. DAVIS, J. Amer. Ceram. Soc. 69(3) (1986) 237.

    Article  Google Scholar 

  5. T. T. LEPISTO and T. A. MANTYLA, Ceram. Eng. Sci. Prod. 10(7–8) (1989) 1362.

    Google Scholar 

  6. A. G. BELOUS, Y. V. PASHKOVA, A. N. MAKARENKO, B. S. KHOMENKO and I. Y. PISNCHAI, Inorg. Mater. 33(12) (1997) 1469.

    Google Scholar 

  7. V. G. PEICHEV, S. Y. PLINER and A. A. DOBIZHA, Steklo i Keramika (3) (1991) 26.

  8. H. YANAGIDA, Metallurgia, Moscow (1986) p. 279.

  9. Certificate of Analysis. Standard Reference Material 1976, Instrument Sensitivity Standard for X-ray Powder Diffraction (Gaithersburg: National Institute of Standards and Technology, 1991) p. 1–4.

  10. T. V. CHUSOVITINA, Y. S. TOROPOV and M. G. TRETNIKOVA, Ogneupory (8) (1991) 14.

  11. Y. N. KNIPOVICH and Y. V. MARACHEVSKII, Gosud. Nauchno-Tekhnich. Izdatelstvo Khim. Literatury, Leningrad, (1956) p. 1055.

    Google Scholar 

  12. Reagents. Chelatometric method for the determination of main-substance content, GOST 10398-76, Moscow, 1976.

  13. V. P. CHALYI, Naukova Dumka, Kyiv (1972) p. 153.

  14. A. N. MAKARENKO, A. G. BELOUS and Y. V. PASHKOVA, J. Europ. Ceram. Soc. 19 (1999) 945.

    Article  Google Scholar 

  15. G. TEUFER, Acta Cryst. 15 (1962) 1187.

    Article  Google Scholar 

  16. C. J. HOWWARD, R. J. HILL and B. E. REICHERT, ibid. 44 (1988) 116.

    Article  Google Scholar 

  17. O. C. KISTNER and A. W. SUNYAR, Phys. Rev. Letters. 4(8) (1960) 412.

    Article  Google Scholar 

  18. G. SHIRANE, D. E. COX and S. L. RUBY, Phys. Rev. 125(4) (1962) 1158.

    Article  Google Scholar 

  19. F. N. RUBY and V. Y. ARSENIN, Nauka, Moscow (1979) p. 285.

  20. G. BENCROFT, A. MEDDOK and R. BERNS, in “Fizika Mineralov,” Mir, Moscow (1971) p. 179.

    Google Scholar 

  21. G. BENCROFT, R. BERNS and A. STONE, in “Fizika Mineralov,” Mir, Moscow (1971) p. 205.

    Google Scholar 

  22. R. D. SHANNON and C. T. PREWITT, Acta Cryst. B25 (1969) 925.

    Google Scholar 

  23. G. A. OLKHOVIK, I. I. NAUMOV, O. I. VELIKOKHATNYI and N. N. APAROV, Inorg. Mater. 29(5) (1993) 636.

    Google Scholar 

  24. F. J. BERRY, M. H. LORETTO and M. R. SMITH, J. Solid State Chem. 83(1) (1989) 91.

    Article  Google Scholar 

  25. D. A. ZYUZIN, E. M. MOROZ, A. S. IVANOVA and V. I. ZAIKOVSKII, Inorg. Mater. 36(4) (2000) 447.

    Google Scholar 

  26. A. P. SHPAK, Y. A. KUNITSKII and Z. A. SAMOILENKO, Akademkniga, Kyiv (2002) p. 167.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belous, A.G., Pashkova, E.V., V'Yunov, O.I. et al. Effect of combined doping (y3 + + fe3 +) on structural features of nanodispersed zirconium oxide. J Mater Sci 40, 5273–5280 (2005). https://doi.org/10.1007/s10853-005-0842-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-005-0842-1

Keywords

Navigation