Skip to main content
Log in

Comparison of Different Parallel Transport Methods for the Study of Deformations in 3D Cardiac Data

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Comparing the deformations of different beating hearts is a challenging operation. As in clinics the impaired condition is often recognized upon (local and global) deformation parameters, the particular nature of heart deformation during one beat can be compared among different individuals in the same ordination space more effectively if initial inter-individual form (shape + size) differences are filtered out. This is even more true if the shape of cardiac trajectory itself is under consideration. This need is satisfied by applying a geometric machinery named “parallel transport” in the field of differential geometry. In recent years several parallel transport methods have been applied to cardiological data acquired via echocardiography, CT scan or magnetic resonance. Concomitantly, some efforts were made for comparing different parallel transport algorithms applied to a variety of toy examples and real deformational data. Here we face the problem of comparing the heavily used LDDMM parallel transport with the recently proposed Riemannian “TPS space” in the context of the deformation of the right ventricle. Using local tensors diagnostics and global energy-based and shape distance-based parameters, we explored the maintenance of original deformations in transported data in four systo-diastolic deformations belonging to one healthy subject and three individuals affected by tetralogy of Fallot, atrial septal defect and pulmonary hypertension. We also do the same in a larger dataset relative to the left ventricle of 82 heathly subjects and 21 patients affected by hypertrophic cardiomyopathy. We also do the same in a larger dataset relative to the left ventricle of 82 heathly subjects and 21 patients affected by hypertrophic cardiomyopathy. In particular, we contrasted the TPS space with classic LDDMM and a modified LDDMM able to manage spherical differences. Our results point toward a neat superiority of TPS space over classic LDDMM. The modified LDDMM performs similarly as it maintains better the chosen diagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Rao, A., Chandrashekara, R., Sanchez-Ortiz, G.I., Mohiaddin, R., Aljabar, P., Hajnal, J.V., Puri, B.K., Rueckert, D.: Spatial transformation of motion and deformation fields using nonrigid registration. IEEE Trans. Med. Imaging 23(9), 1065–1076 (2004). https://doi.org/10.1109/TMI.2004.828681

    Article  Google Scholar 

  2. Alexander, A., McGill, M., Tarasova, A., Ferreira, C., Zurkiya, D.: Scanning the future of medical imaging. J. Am. College Radiol. 16(4), 501–507 (2019)

    Article  Google Scholar 

  3. Glaunes, J., Trouvé, A., Younes, L.: Diffeomorphic Matching of Distributions: A New Approach for Unlabelled Point-sets and Sub-manifolds Matching 2, pp. 712–718 (2004)

  4. Ferraro, A.M., Adar, A., Ghelani, S.J., Sleeper, L.A., Levy, P.T., Rathod, R.H., Marx, G.R., Harrild, D.M.: Speckle tracking echocardiographically-based analysis of ventricular strain in children: an intervendor comparison. Cardiovasc. Ultrasound (2020). https://doi.org/10.1186/s12947-020-00199-x

    Article  Google Scholar 

  5. Piras, P., Torromeo, C., Evangelista, A., Esposito, G., Nardinocchi, P., Teresi, L., Madeo, A., Re, F., Chialastri, C., Schiariti, M., Varano, V., Puddu, P.E.: Non-invasive prediction of genotype positive-phenotype negative in hypertrophic cardiomyopathy by 3d modern shape analysis. Exp. Physiol. 104(11), 1688–1700 (2019). https://doi.org/10.1113/EP087551

    Article  Google Scholar 

  6. Esposito, G., Piras, P., Evangelista, A., Nuzzi, V., Nardinocchi, P., Pannarale, G., Torromeo, C., Puddu, P.E.: Improving performance of 3d speckle tracking in arterial hypertension and paroxysmal atrial fibrillation by using novel strain parameters. Sci. Rep. (2019). https://doi.org/10.1038/s41598-019-43855-7

    Article  Google Scholar 

  7. Litjens, G., Kooi, T., Bejnordi, B.E., Setio, A.A.A., Ciompi, F., Ghafoorian, M., van der Laak, J.A.W.M., van Ginneken, B., Sánchez, C.I.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017). https://doi.org/10.1016/j.media.2017.07.005

    Article  Google Scholar 

  8. Moceri, P., Duchateau, N., Gillon, S., Jaunay, L., Baudouy, D., Squara, F., Ferrari, E., Sermesant, M.: Three-dimensional right ventricular shape and strain in congenital heart disease patients with right ventricular chronic volume loading. Eur. Heart J. Cardiovasc. Imaging 22(10), 1174–1181 (2021). https://doi.org/10.1093/ehjci/jeaa189

    Article  Google Scholar 

  9. Piras, P., Torromeo, C., Evangelista, A., Gabriele, S., Esposito, G., Nardinocchi, P., Teresi, L., Madeo, A., Schiariti, M., Varano, V., Puddu, P.E.: Homeostatic left heart integration and disintegration links atrio-ventricular covariation’s dyshomeostasis in hypertrophic cardiomyopathy. Sci. Rep. (2017). https://doi.org/10.1038/s41598-017-06189-w

    Article  Google Scholar 

  10. Piras, P., Evangelista, A., Gabriele, S., Nardinocchi, P., Teresi, L., Torromeo, C., Schiariti, M., Varano, V., Puddu, P.E.: 4d-analysis of left ventricular heart cycle using procrustes motion analysis. PloS ONE 9(1), 86896 (2014)

    Article  Google Scholar 

  11. Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Geometric means in a novel vector space structure on symmetric positive-definite matrices. SIAM J. Matrix Anal. Appl. 29(1), 328–347 (2006)

    Article  MathSciNet  Google Scholar 

  12. Filiard, P., Pennec, X., Arsigny, V., Ayache, N.: Clinical DT-MRI estimation, smoothing, and fiber tracking with log-Euclidean metrics. IEEE Trans. Med. Imaging 26(11), 1472–1482 (2007)

    Article  Google Scholar 

  13. Miller, M.I., Qiu, A.: The emerging discipline of computational functional anatomy. Neuroimage 45(1), 16–39 (2009)

    Article  Google Scholar 

  14. Hartman, E., Sukurdeep, Y., Klassen, E., Charon, N., Bauer, M.: Elastic shape analysis of surfaces with second-order Sobolev metrics: a comprehensive numerical framework. Int. J. Comput. Vis. 131(5), 1183–1209 (2023)

    Article  Google Scholar 

  15. Madeo, A., Piras, P., Re, F., Gabriele, S., Nardinocchi, P., Teresi, L., Torromeo, C., Chialastri, C., Schiariti, M., Giura, G., et al.: A new 4d trajectory-based approach unveils abnormal lv revolution dynamics in hypertrophic cardiomyopathy. PloS ONE 10(4), 0122376 (2015)

    Article  Google Scholar 

  16. Piras, P., Profico, A., Pandolfi, L., Raia, P., Di Vincenzo, F., Mondanaro, A., Castiglione, S., Varano, V.: Current options for visualization of local deformation in modern shape analysis applied to paleobiological case studies. Front. Earth Sci. 8, 66 (2020)

    Article  Google Scholar 

  17. Piras, P., Torromeo, C., Re, F., Evangelista, A., Gabriele, S., Esposito, G., Nardinocchi, P., Teresi, L., Madeo, A., Chialastri, C., Schiariti, M., Varano, V., Uguccioni, M., Puddu, P.E.: Left atrial trajectory impairment in hypertrophic cardiomyopathy disclosed by geometric morphometrics and parallel transport. Sci. Rep. (2016). https://doi.org/10.1038/srep34906

    Article  Google Scholar 

  18. Buckley, P.F., Dean, D., Bookstein, F.L., Friedman, L., Kwon, D., Lewin, J.S., Kamath, J., Lys, C.: Three-dimensional magnetic resonance-based morphometrics and ventricular dysmorphology in schizophrenia. Biol. Psychiatry 45(1), 62–67 (1999)

    Article  Google Scholar 

  19. Piras, P., Sansalone, G., Teresi, L., Moscato, M., Profico, A., Eng, R., Cox, T.C., Loy, A., Colange, lP., Kotsakis, T.: Digging adaptation in insectivorous subterranean eutherians. The enigma of mesoscalops montanensis unveiled by geometric morphometrics and finite element analysis. J. Morphol. 276(10), 1157–1171 (2015). https://doi.org/10.1002/jmor.20405

    Article  Google Scholar 

  20. Varano, V., Gabriele, S., Teresi, L., Dryden, I.L., Puddu, P.E., Torromeo, C., Piras, P.: The TPS direct transport: a new method for transporting deformations in the size-and-shape space. Int. J. Comput. Vis. 124(3), 384–408 (2017). https://doi.org/10.1007/s11263-017-1031-9

    Article  MathSciNet  Google Scholar 

  21. Durrleman, S., Prastawa, M., Charon, N., Korenberg, J.R., Joshi, S., Gerig, G., Trouvé, A.: Morphometry of anatomical shape complexes with dense deformations and sparse parameters. NeuroImage 101, 35–49 (2014). https://doi.org/10.1016/j.neuroimage.2014.06.043

    Article  Google Scholar 

  22. Joshi, S.C., Miller, M.I.: Landmark matching via large deformation diffeomorphisms. IEEE Trans. Image Process. 9(8), 1357–1370 (2000). https://doi.org/10.1109/83.855431

    Article  MathSciNet  Google Scholar 

  23. Piras, P., Varano, V., Louis, M., Profico, A., Durrleman, S., Charlier, B., Milicchio, F., Teresi, L.: Transporting deformations of face emotions in the shape spaces: a comparison of different approaches. J. Math. Imaging Vis. 63(7), 875–893 (2021). https://doi.org/10.1007/s10851-021-01030-6

    Article  MathSciNet  Google Scholar 

  24. Guigui, N., Moceri, P., Sermesant, M., Pennec, X.: Cardiac motion modeling with parallel transport and shape splines. In: ISBI 2021—IEEE18th International Symposium on Biomedical Imaging, pp. 1394–1397 (2021). https://doi.org/10.1109/ISBI48211.2021.9433887

  25. Guigui, N., Pennec, X.: Parallel transport, a central tool in geometric statistics for computational anatomy: application to cardiac motion modeling. In: Geometry and Statistics. Handbook of Statistics, vol. 46. Elsevier (2022)

  26. Varano, V., Piras, P., Gabriele, S., Teresi, L., Nardinocchi, P., Dryden, I.L., Torromeo, C., Puddu, P.E.: The decomposition of deformation: new metrics to enhance shape analysis in medical imaging. Med. Image Anal. 46, 35–56 (2018). https://doi.org/10.1016/j.media.2018.02.005

    Article  Google Scholar 

  27. Varano, V., Piras, P., Gabriele, S., Teresi, L., Nardinocchi, P., Dryden, I.L., Torromeo, C., Schiariti, M., Puddu, P.E.: Local and global energies for shape analysis in medical imaging. Int. J. Numer. Methods Biomed. Eng. (2020). https://doi.org/10.1002/cnm.3252

    Article  MathSciNet  Google Scholar 

  28. Guigui, N.: Computational methods for statistical estimation on Riemannian manifolds and application to the study of the cardiac deformations. Theses, Université Côte d’Azur (November 2021). https://tel.archives-ouvertes.fr/tel-03563980

  29. Micheli, M., Glaunès, J.A.: Matrix-valued kernels for shape deformation analysis. Geom. Imaging Comput. 1(1), 57–139 (2014). https://doi.org/10.4310/GIC.2014.v1.n1.a2

    Article  MathSciNet  Google Scholar 

  30. Louis, M., Bône, A., Charlier, B., Durrleman, S., Initiative, A.D.N., et al.: Parallel transport in shape analysis: a scalable numerical scheme. In: International Conference on Geometric Science of Information, pp. 29–37 (2017). Springer

  31. Lorenzi, M., Pennec, X.: Efficient parallel transport of deformations in time series of images: from Schild to pole ladder. J. Math. Imaging Vis. 50(1), 5–17 (2014). https://doi.org/10.1007/s10851-013-0470-3

  32. Guigui, N., Pennec, X.: Numerical accuracy of ladder schemes for parallel transport on manifolds. Found. Comput. Math. (2021). https://doi.org/10.1007/s10208-021-09515-x

    Article  Google Scholar 

  33. Niethammer, M., Vialard, F.-X.: Riemannian metrics for statistics on shapes : Parallel transport and scale invariance. In: Proceedings of the 4th MICCAI Workshop on Mathematical Foundations of Computational Anatomy (MFCA) (2013)

  34. Varano, V., Piras, P., Teresi, L., Gabriele, S., Dryden, I.L., Nardinocchi, P., Evangelista, A., Torromeo, C., Puddu, P.E.: A threefold deformation decomposition in shape analysis for medical imaging: spherical, deviatoric and non affine components. Lecture Notes in Computational Vision and Biomechanics, vol. 27, pp. 1125–1134 (2018)

  35. Gabriele, S., Nardinocchi, P., Varano, V.: Evaluation of the strain-line patterns in a human left ventricle: a simulation study. Comput. Methods Biomech. Biomed. Eng. 18(7), 790–798 (2015). https://doi.org/10.1080/10255842.2013.847094

    Article  Google Scholar 

  36. Evangelista, A., Gabriele, S., Nardinocchi, P., Piras, P., Puddu, P., Teresi, L., Torromeo, C., Varano, V.: Non-invasive assessment of functional strain lines in the real human left ventricle via speckle tracking echocardiography. J. Biomech. 48(3), 465–471 (2015)

    Article  Google Scholar 

  37. Bookstein, F.L.: Principal warps: Thin-plate splines and the decomposition of deformations. IEEE Trans. Pattern Anal. Mach. Intell. 11(6), 567–585 (1989)

    Article  Google Scholar 

  38. Lafarge, T., Pateiro-Lopez, B.: Alphashape3d: implementation of the 3D alpha-shape for the reconstruction of 3D sets from a point cloud. (2023). R package version 1.3.2. https://CRAN.R-project.org/package=alphashape3d

Download references

Acknowledgements

We really thank Pamela Moceri and Nicolas Duchateau for collecting and curating the right ventricle data as well as for their kindness in sharing part of their data. We also thank Concetta Torromeo and Paolo Emilio Puddu for sharing the left ventricle dataset.

Author information

Authors and Affiliations

Authors

Contributions

All authors wrote and reviewed the manuscript.

Corresponding author

Correspondence to Paolo Piras.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piras, P., Guigui, N. & Varano, V. Comparison of Different Parallel Transport Methods for the Study of Deformations in 3D Cardiac Data. J Math Imaging Vis 66, 393–415 (2024). https://doi.org/10.1007/s10851-024-01186-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-024-01186-x

Keywords

Navigation