Skip to main content
Log in

Some Equivalence Relation between Persistent Homology and Morphological Dynamics

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

In mathematical morphology, connected filters based on dynamics are used to filter the extrema of an image. Similarly, persistence is a concept coming from persistent homology and Morse theory that represents the stability of the extrema of a Morse function. Since these two concepts seem to be closely related, in this paper we examine their relationship, and we prove that they are equal on n-D Morse functions, \(n\ge 1\). More exactly, pairing a minimum with a 1-saddle by dynamics or pairing the same 1-saddle with a minimum by persistence leads exactly to the same pairing, assuming that the critical values of the studied Morse function are unique. This result is a step further to show how much topological data analysis and mathematical morphology are related, paving the way for a more in-depth study of the relations between these two research fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. https://higra.readthedocs.io/en/stable/python-tree_attributes.html, 2021. Accessed: 2021-06-17

  2. Audin, M., Damian, M.: Morse theory and floer homology. Springer (2014)

  3. Bertrand, G.: On the dynamics. Image Vision Comput 25(4), 447–454 (2007)

    Article  Google Scholar 

  4. Bertrand, G, Everat, J-C, Couprie, M.: Topological approach to image segmentation. In: SPIE’s 1996 International Symposium on Optical Science, Engineering, and Instrumentation, vol. 2826, pp. 65–76. International Society for Optics and Photonics (1996)

  5. Beucher, S., Meyer, F.: The morphological approach to segmentation: the watershed transformation. Optical Engineering, New York, Marcel Dekker Incorporated 34: 433 (1992)

  6. Boutry, N., Géraud, T., Najman, L.: An equivalence relation between Morphological Dynamics and Persistent Homology in 1D. In: International Symposium on Mathematical Morphology. volume 11564 of Lecture Notes in Computer Science Series, pp. 57–68. Springer, (2019)

  7. Boutry, N., Géraud, T., Najman, L.: An equivalence relation between morphological dynamics and persistent homology in \(n\)-D. In: International Conference on Discrete Geometry and Mathematical Morphology, pp. 525–537. Springer (2021)

  8. Carlinet, E., Crozet, S., Géraud, T.: The tree of shapes turned into a max-tree: a simple and efficient linear algorithm. In: 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 1488–1492. IEEE (2018)

  9. Carlinet, E., Géraud, T.: A comparative review of component tree computation algorithms. IEEE Trans. Image Process. 23(9), 3885–3895 (2014)

    Article  MathSciNet  Google Scholar 

  10. Carr, H., Snoeyink, J., Axen, U.: Computing contour trees in all dimensions. Comput. Geom. 24(2), 75–94 (2003)

    Article  MathSciNet  Google Scholar 

  11. Carr, H., Snoeyink, J., Van De Panne, M.: Simplifying flexible isosurfaces using local geometric measures. In: IEEE Visualization 2004, pp 497–504. IEEE (2004)

  12. Caselles, V., Monasse, P.: Geometric description of images as topographic maps. Springer (2009)

  13. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Extending persistence using Poincaré and Lefschetz duality. Found. Comput. Math. 9(1), 79–103 (2009)

    Article  MathSciNet  Google Scholar 

  14. Čomić, L., De Floriani, L., Iuricich, F., Magillo, P.: Computing a discrete Morse gradient from a watershed decomposition. Comput. Graph. 58, 43–52 (2016)

    Article  Google Scholar 

  15. Čomić, L., De Floriani, L., Papaleo, L.: Morse-smale decompositions for modeling terrain knowledge. In: International Conference on Spatial Information Theory, pp. 426–444. Springer (2005)

  16. Cousty, J., Bertrand, G., Couprie, M., Najman, L.: Collapses and watersheds in pseudomanifolds of arbitrary dimension. J. Math. Imaging Vis. 50(3), 261–285 (2014)

    Article  MathSciNet  Google Scholar 

  17. Cousty, J., Bertrand, G., Najman, L., Couprie, M.: Watershed cuts: Minimum spanning forests and the drop of water principle. IEEE Trans. Pattern Anal. Mach. Intell. 31(8), 1362–1374 (2009)

    Article  Google Scholar 

  18. Cousty, J., Najman, L., Kenmochi, Y., Guimarães, S.: Hierarchical segmentations with graphs: quasi-flat zones, minimum spanning trees, and saliency maps. J. Math. Imaging Vis. 60(4), 479–502 (2018)

    Article  MathSciNet  Google Scholar 

  19. Crozet, S., Géraud, T.: A first parallel algorithm to compute the morphological tree of shapes of nd images. In: 2014 IEEE International Conference on Image Processing (ICIP), pp. 2933–2937. IEEE (2014)

  20. Dey, T.K., Wenger, R.: Stability of critical points with interval persistence. Discre. Comput. Geom. 38(3), 479–512 (2007)

    Article  MathSciNet  Google Scholar 

  21. Edelsbrunner, H., Harer, J.: Persistent Homology - A survey. Contemp. Math. 453, 257–282 (2008)

    Article  MathSciNet  Google Scholar 

  22. Edelsbrunner H., Harer J.: Computational topology: an introduction. Am. Math. Soc. (2010)

  23. Edelsbrunner, H., Harer, J., Natarajan, V., Pascucci, V.: Morse-Smale complexes for piecewise linear 3-manifolds. In: Proceedings of the Nineteenth Annual Symposium on Computational Geometry, pp. 361–370 (2003)

  24. Edelsbrunner, H., Harer, J., Zomorodian, A.: Hierarchical Morse-Smale complexes for piecewise linear 2-manifolds. Discre. Comput. Geom. 30(1), 87–107 (2003)

    Article  MathSciNet  Google Scholar 

  25. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. Found. Comput. Sci. pp 454–463. IEEE (2000)

  26. Forman, R.: A Discrete Morse Theory for cell complexes. In: Yau, S.-T. (ed.) Geometry. Topology for Raoul Bott. International Press, Somerville MA (1995)

    MATH  Google Scholar 

  27. Forman, R.: Morse Theory for cell complexes (1998)

  28. Forman, R.: A user’s guide to Discrete Morse Theory. In: Sém. Lothar. Combin. pp. 48:35 (2002)

  29. Freeman, H., Morse, S.P.: On searching a contour map for a given terrain elevation profile. J. Franklin Inst. 284(1), 1–25 (1967)

    Article  Google Scholar 

  30. Géraud, T., Carlinet, E., Crozet, S., Najman, L.: A quasi-linear algorithm to compute the tree of shapes of n-D images. In: International Symposium on Mathematical Morphology and Its Applications to Signal and Image Processing, volume 7883 of Lecture Notes in Computer Science. pp. 98–110. Springer (2013)

  31. Grimaud, M.: La géodésie numérique en Morphologie Mathématique. Application à la détection automatique des microcalcifications en mammographie numérique. PhD thesis, École des Mines de Paris (1991)

  32. Grimaud, M.: New measure of contrast: the dynamics. In: Image Algebra and Morphological Image Processing III. 1769, 292–306. International Society for Optics and Photonics (1992)

  33. Gueunet, C., Fortin, P., Jomier, J., Tierny, J.: Task-based augmented contour trees with fibonacci heaps. IEEE Trans. Parallel Distrib. Syst. 30(8), 1889–1905 (2019)

    Article  Google Scholar 

  34. Günther, D., Reininghaus, J., Wagner, H., Hotz, I.: Efficient computation of 3D Morse-Smale complexes and Persistent Homology using Discrete Morse Theory. Vis. Comput. 28(10), 959–969 (2012)

    Article  Google Scholar 

  35. Jöllenbeck, M., Welker, V.: Minimal resolutions via Algebraic Discrete Morse Theory. Am. Math. Soc. (2009)

  36. Lukasczyk, J., Garth, C., Maciejewski, R., Tierny, J.: Localized topological simplification of scalar data. IEEE Trans. Vis. Comput. Graph. 27, 572 (2020)

    Article  Google Scholar 

  37. M, Talha Bin, Budin, J., Falk, M., Favelier, G., Garth, C., Gueunet, C., Guillou, P., Hofmann, L., Hristov, P., Kamakshidasan, A., et al.: An overview of the topology toolkit. In: TopoInVis 2019-Topological Methods in Data Analysis and Visualization (2019)

  38. Matheron, G.: Random sets theory and its applications to stereology. J. Microsc. 95(1), 15–23 (1972)

    Article  Google Scholar 

  39. Meyer, F.: Skeletons and perceptual graphs. Signal Process. 16(4), 335–363 (1989)

    Article  MathSciNet  Google Scholar 

  40. Milnor, J.W.: Michael Spivak, Robert Wells, and Robert Wells. Princeton University Press, Morse Theory, Princeton (1963)

    Google Scholar 

  41. Najman, L.: On the equivalence between hierarchical segmentations and ultrametric watersheds. J. Math. Imaging Vis. 40(3), 231–247 (2011)

    Article  MathSciNet  Google Scholar 

  42. Najman, L., Schmitt, M.: Geodesic saliency of watershed contours and hierarchical segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 18(12), 1163–1173 (1996)

    Article  Google Scholar 

  43. Najman L., Talbot H.: Mathematical morphology: from theory to applications. Wiley (2013)

  44. Perret, B., Chierchia, G., Cousty, J., Guimaraes, S.J.F., Kenmochi, Y., Najman, L.: Higra: hierarchical graph analysis. Software 10, 100335 (2019)

    Article  Google Scholar 

  45. Salembier, P., Oliveras, A., Garrido, L.: Antiextensive connected operators for image and sequence processing. IEEE Trans. Image Process. 7(4), 555–570 (1998)

  46. Salembier, P., Wilkinson, M.H.F.: Connected operators. IEEE Signal Process. Mag. 26(6), 136–157 (2009)

  47. Serra, J.: Introduction to mathematical morphology. Comput. Vis. Graph. Image Process. 35(3), 283–305 (1986)

    Article  Google Scholar 

  48. Serra J., Soille P.: Mathematical morphology and its applications to image processing, vol. 2. Springer (2012)

  49. Tierny, J., Favelier, G., Levine, J.A., Gueunet, C., Michaux, M.: The topology toolkit. IEEE Trans. Vis. Comput. Graph. 24(1), 832–842 (2017)

    Article  Google Scholar 

  50. Urbach, E.R., Roerdink, J.B.T.M., Wilkinson, M.H.F.: Connected shape-size pattern spectra for rotation and scale-invariant classification of gray-scale images. IEEE Trans Pattern Anal. Mach. Intell. 29(2), 272–285 (2007)

    Article  Google Scholar 

  51. Vachier, C.: Extraction de caractéristiques, segmentation d’image et Morphologie Mathématique. PhD thesis, École Nationale Supérieure des Mines de Paris (1995)

  52. Vincent, L., Soille, P.: Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell. 13(6), 583–598 (1991)

    Article  Google Scholar 

  53. Yongchao, X., Géraud, T., Najman, L.: Connected filtering on tree-based shape-spaces. IEEE Trans. Pattern Anal. Mach. Intell. 38(6), 1126–1140 (2015)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Julien Tierny for many interesting discussions and for providing us Fig. 17.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Boutry.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Ambiguities Occurring When Values are not Unique

A Ambiguities Occurring When Values are not Unique

Fig. 19
figure 19

Ambiguities can occur when critical values are not unique for pairing by dynamics and for pairing by persistence

As depicted in Fig. 19, the abscissa of the blue point can be paired by persistence to the abscissas of the orange and/or the red points. The same thing appears when we want to pair the abscissa of the pink point to the abscissas of the green and/or blue points. This shows how much it is important to have unique critical values on Morse functions. This point is discussed in detail in [3], where it is shown that a strict total order relation on the set of minima allows for a good definition of the dynamics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boutry, N., Najman, L. & Géraud, T. Some Equivalence Relation between Persistent Homology and Morphological Dynamics. J Math Imaging Vis 64, 807–824 (2022). https://doi.org/10.1007/s10851-022-01104-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-022-01104-z

Keywords

Navigation