Journal of Mathematical Imaging and Vision

, Volume 58, Issue 2, pp 211–238

Image Labeling by Assignment

  • Freddie Åström
  • Stefania Petra
  • Bernhard Schmitzer
  • Christoph Schnörr
Article

DOI: 10.1007/s10851-016-0702-4

Cite this article as:
Åström, F., Petra, S., Schmitzer, B. et al. J Math Imaging Vis (2017) 58: 211. doi:10.1007/s10851-016-0702-4

Abstract

We introduce a novel geometric approach to the image labeling problem. Abstracting from specific labeling applications, a general objective function is defined on a manifold of stochastic matrices, whose elements assign prior data that are given in any metric space, to observed image measurements. The corresponding Riemannian gradient flow entails a set of replicator equations, one for each data point, that are spatially coupled by geometric averaging on the manifold. Starting from uniform assignments at the barycenter as natural initialization, the flow terminates at some global maximum, each of which corresponds to an image labeling that uniquely assigns the prior data. Our geometric variational approach constitutes a smooth non-convex inner approximation of the general image labeling problem, implemented with sparse interior-point numerics in terms of parallel multiplicative updates that converge efficiently.

Keywords

Image labeling Assignment manifold Fisher–Rao metric Riemannian gradient flow Replicator equations Information geometry Neighborhood filters Nonlinear diffusion 

Mathematics Subject Classification

62H35 65K05 68U10 62M40 

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Heidelberg Collaboratory for Image ProcessingHeidelberg UniversityHeidelbergGermany
  2. 2.Mathematical Imaging GroupHeidelberg UniversityHeidelbergGermany
  3. 3.CEREMADEUniversity Paris-DauphineParisFrance
  4. 4.Image and Pattern Analysis GroupHeidelberg UniversityHeidelbergGermany

Personalised recommendations