Skip to main content
Log in

Mathematical Analysis of the Multisolution Phenomenon in the P3P Problem

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

The perspective 3-point problem, also known as pose estimation, has its origins in camera calibration and is of importance in many fields: for example, computer animation, automation, image analysis and robotics. One line of activity involves formulating it mathematically in terms of finding the solution to a quartic equation. However, in general, the equation does not have a unique solution, and in some situations there are no solutions at all. Here, we present a new approach to the solution of the problem; this involves closer scrutiny of the coefficients of the polynomial, in order to understand how many solutions there will be for a given set of problem parameters. We find that, if the control points are equally spaced, there are four positive solutions to the problem at 25 % of all available spatial locations for the control-point combinations, and two positive solutions at the remaining 75 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Finsterwalder, S., Scheufele, W.: Das Rückwärtseinschneiden im Raum. Sebastian Finsterwalder zum 75. Geburtstage. Verlag Herbert Wichmann, Berlin (1937)

    Google Scholar 

  2. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24, 381–396 (1981)

    Article  MathSciNet  Google Scholar 

  3. Gao, X.S., Hou, X.R., Tang, J., Cheng, H.F.: Complete solution classification for the perspective-threepoint problem. IEEE Trans. Pattern Anal. Mach. Intell. 25, 930–943 (2003)

    Article  Google Scholar 

  4. Grafarend, E.W., Lohse, P., Schaffrin, B.: Dreidimensionaler rückwärtsschnitt, Teil I: Die projektiven Gleichungen, pp. 1–37. Zeitschrift für Vermessungswesen, Geodätisches Institut, Universität, Stuttgart (1989)

    Google Scholar 

  5. Grunert, J.A.: Das Pothenotische Problem in erweiterter Gestalt nebst über seine Anwendungen in der Geodäsie. Grunerts Archiv für Mathematik und Physik 1, 238–248 (1841)

    Google Scholar 

  6. Haralick, R.M., Lee, C., Ottenberg, K., Nolle, M.: Review and analysis of solutions of the 3-point perspective pose estimation problem. Int. J. Comput. Vis. 13, 331–356 (1994)

    Article  Google Scholar 

  7. Lazard, D.: Quantifier elimination: optimal solution for two classical examples. J. Symb. Comput. 5, 261–266 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  8. Linnainmaa, S., Harwood, D., Davis, L.S.: Pose determination of a three-dimensional object using triangle pairs. IEEE Trans. Pattern Anal. Mach. Intell. 10, 634–647 (1988)

    Article  Google Scholar 

  9. Merritt, E.L.: Explicit three-point resection in space. Photogr. Eng. XV, 649–655 (1949)

    Google Scholar 

  10. Quan, L., Lan, Z.: Linear N-point camera pose determination. IEEE Trans. Pattern Anal. Mach. Intell. 21, 774–780 (1999)

    Article  Google Scholar 

  11. Rees, E.L.: Graphical discussion of the roots of a quartic equation. Am. Math. Mon. 29, 51–55 (1922)

    Article  MATH  Google Scholar 

  12. Rieck, M.Q.: Handling repeated solutions to the perspective three-point pose problem. In: Richard, P., Braz, J. (eds.) VISAPP (1), pp. 395–399. INSTICC Press, Madeira (2010)

    Google Scholar 

  13. Rieck, M.Q.: An algorithm for finding repeated solutions to the general perspective three-point pose problem. J. Math. Imaging Vis. 42, 92–100 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  14. Rieck, M.Q.: A fundamentally new view of the perspective three-point pose problem. J. Math. Imaging Vis. 48, 499–516 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  15. Su, C., Xu, Y., Li, H., Liu, S.: Application of Wu’s method in computer animation. Proc. Fifth Int. Conf. CAD/CG 1, 211–215 (1997)

    Google Scholar 

  16. Su, C., Xu, Y., Li, H., Liu, S.: Necessary and sufficient condition of positive root mumber of P3P problem. Chin. J. Comput. Sci. 21, 1084–1095 (1998)

  17. Wolfe, W.J., Mathis, D., Sklair, C.W., Magee, M.: The perspective view of three points. IEEE Trans. Pattern Anal. Mach. Intell. 13, 66–73 (1991)

  18. Yang, L.: A simplified algorithm for solution classification of the perspective-three-point problem. Tech. rep, MM-Preprints, MMRC, Academia Sinica (1998)

  19. Yuan, J.S.C.: A general photogrammetric method for determining object position and orientation. IEEE Trans. Robot. Autom. 5, 129–142 (1989)

    Article  Google Scholar 

  20. Zhang, C.X., Hu, Z.Y.: A general sufficient condition of four positive solutions of the P3P problem. J. Comput. Sci. Technol. 20, 836–843 (2005)

    Article  Google Scholar 

  21. Zhang, C.X., Hu, Z.Y.: Why is the danger cylinder dangerous in the P3P problem? Acta Autom. Sin. 32, 504–511 (2006)

    Google Scholar 

  22. Zhang, C.X., Hu, Z.Y.: A probabilistic study on the multiple solutions of the P3P problem. J. Softw. 18, 2100–2104 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

M. Vynnycky acknowledges the support of the Mathematics Applications Consortium for Science and Industry www.macsi.ul.ie, funded by the Science Foundation Ireland (SFI) Mathematics Initiative Grant 06/MI/005 and SFI Grant 12/IA/1683, as well as funding support from Research Institute of Electronics, Shizuoka University, Japan, for visiting and cooperative research. The authors also acknowledge useful discussions with Prof. J. A. Cuminato, and the comments of an anonymous referee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Vynnycky.

Appendix: \(\varDelta _{W},P,D,q\)

Appendix: \(\varDelta _{W},P,D,q\)

Substituting (43)–(47) into (49) gives, on factorizing,

$$\begin{aligned} \varDelta _{W}&=-16777216\left( p_{{2}}^{2}-p_{{3}}^{2}\right) ^{2} \left( p_{{1}}^{2}-p_{{3}}^{2}\right) ^{2}\left( p_{{1}}^{2}-p_{{2}}^{2}\right) ^2 \nonumber \\&\varDelta _T^{2}f_{1}\left( p_{1},p_{2},p_{3}\right) , \end{aligned}$$
(61)

where

$$\begin{aligned} \varDelta _T={p_{{1}}^{2}}+{p_{{2}}^{2}}+{p_{{3}}^{2}}-2p_{{1}}p_{{2}}p_{{3} }-1 \end{aligned}$$

and

$$\begin{aligned} f_{1}\left( p_{1},p_{2},p_{3}\right)&= -16{p_{{1}}^{4}p_{{2}}^{4}p_{{3} }^{4}}+32{p_{{1}}^{3}p_{{2}}^{3}p_{{3}}^{3}}\left( {p_{{1}}^{2}}+{p}_{2} ^{2}+p_{3}^{2}\right) \nonumber \\&-72{p_{{1}}^{2}p_{{2}}^{2}p_{{3}}^{2}}\left( {p_{{1}}^{2}}+{p}_{2} ^{2}+p_{3}^{2}\right) +184{p_{{1}}^{3}p_{{2}}^{3}p_{{3}}^{3}}\nonumber \\&+27\left( {p_{{1}}^{4}p_{{2}}^{4}}+{p_{{1}}^{4}p_{{3}}^{4}}+{p_{{2}} ^{4}p_{{3}}^{4}}\right) \nonumber \\&-6{p_{{1}}^{2}p_{{2}}^{2}p_{{3}}^{2}}\left( {p_{{1}}^{2}}+{p}_{2} ^{2}+p_{3}^{2}\right) \nonumber \\&-72p_{1}p_{2}p_{3}\left( {p_{{1}}^{2}p_{{2}}^{2}}+{p_{{1}}^{2}p_{{3}}^{2} }+{p_{{2}}^{2}p_{{3}}^{2}}\right) \nonumber \\&+84{p_{{1}}^{2}p_{{2}}^{2}p_{{3}}^{2}}+24p_{1}p_{2}p_{3}\left( {p_{{1} }^{2}}+{p_{{2}}^{2}}+{p_{{3}}^{2}}\right) \nonumber \\&-18\left( {p_{{1}}^{2}p_{{2}}^{2}}+{p_{{1}}^{2}p_{{3}}^{2}}+{p_{{2}} ^{2}p_{{3}}^{2}}\right) \nonumber \\&-8p_{{1}}p_{{2}}p_{{3}}+4\left( {p_{{1}}^{2}}+{p_{{2}}^{2}}+{p_{{3}}^{2} }\right) -1, \end{aligned}$$
(62)

as also obtained previously by Rieck [13]. Observe that \(f_{1}\left( 0,0,0\right) =-1,\) which means that \(\varDelta _{W}>0\) within the double crown-like shape shown in Fig. 8, and \(\varDelta _{W}<0\) between it and the inflated tetrahedron. Note also that \(f_1=0\) corresponds to what is commonly referred to as the danger cylinder [20, 21], as noted by [12].

Similarly, substituting (43)–(47) into (50) gives

$$\begin{aligned} P=-1024\varDelta _T^{2}f_{2}\left( p_{1},p_{2},p_{3}\right) , \end{aligned}$$
(63)

where

$$\begin{aligned}&f_{2}\left( p_{1},p_{2},p_{3}\right) \nonumber \\ =&12p_{1}^{4}p_{2}^{4}-36p_{1} ^{3}p_{2}^{3}p_{3}+27p_{1}^{2}p_{2}^{2}p_{3}^{2}\nonumber \\&\quad +4p_{1}p_{2}p_{3}\left( 2p_{1}^{2}+2p_{2}^{2}-p_{3}^{2}\right) \nonumber \\&\quad -6\left( p_{1}^{2}p_{2}^{2}+p_{1}^{2}p_{3}^{2}+p_{2}^{2}p_{3}^{2}\right) +p_{1}^{2}+p_{2}^{2}+p_{3}^{2}, \end{aligned}$$
(64)

whereas (52) leads to

$$\begin{aligned} D=-1048576\varDelta _T^{4}f_{3}\left( p_{1},p_{2},p_{3}\right) , \end{aligned}$$
(65)

where

$$\begin{aligned} f_{3}\left( p_{1},p_{2},p_{3}\right)&= 48p_{1}^{8}p_{2}^{8}-288p_{1} ^{7}p_{2}^{7}p_{3}+648p_{1}^{6}p_{2}^{6}p_{3}^{2}\nonumber \\&+64p_{1}^{7}p_{2}^{5}p_{3}+64p_{1}^{5}p_{2}^{7}p_{3}-680p_{1}^{5}p_{2} ^{5}p_{3}^{3}\nonumber \\&-48p_{1}^{6}p_{2}^{6}-240p_{1}^{6}p_{2}^{4}p_{3}^{2}-240p_{1}^{4}p_{2} ^{6}p_{3}^{2}\nonumber \\&+339p_{1}^{4}p_{2}^{4}p_{3}^{4}+144p_{1}^{5}p_{2}^{5}p_{3}+288p_{1} ^{5}p_{2}^{3}p_{3}^{3}\nonumber \\&+288p_{1}^{3}p_{2}^{5}p_{3}^{3}-72p_{1}^{3}p_{2}^{3}p_{3}^{5}+8p_{1} ^{6}p_{2}^{4}\nonumber \\&+20p_{1}^{6}p_{2}^{2}p_{3}^{2}+8p_{1}^{4}p_{2}^{6}-56p_{1}^{4}p_{2} ^{4}p_{3}^{2}\nonumber \\&-128p_{1}^{4}p_{2}^{2}p_{3}^{4}+20p_{1}^{2}p_{2}^{6}p_{3}^{2}-128p_{1} ^{2}p_{2}^{4}p_{3}^{4}\nonumber \\&+4p_{1}^{2}p_{2}^{2}p_{3}^{6}-54p_{1}^{5}p_{2}^{3}p_{3}-30p_{1}^{5} p_{2}p_{3}^{3}\nonumber \\&-54p_{1}^{3}p_{2}^{5}p_{3}-84p_{1}^{3}p_{2}^{3}p_{3}^{3}+18p_{1}^{3} p_{2}p_{3}^{5}\nonumber \\&-30p_{1}p_{2}^{5}p_{3}^{3}+18p_{1}p_{2}^{3}p_{3}^{5}+9p_{1}^{4}p_{2} ^{4}\nonumber \\&+45p_{1}^{4}p_{2}^{2}p_{3}^{2}+9p_{1}^{4}p_{3}^{4}+45p_{1}^{2}p_{2} ^{4}p_{3}^{2}\nonumber \\&+45p_{1}^{2}p_{2}^{2}p_{3}^{4}+9p_{2}^{4}p_{3}^{4}+4p_{1}^{5}p_{2} p_{3}\nonumber \\&+12p_{1}^{3}p_{2}^{3}p_{3}+4p_{1}^{3}p_{2}p_{3}^{3}+4p_{1}p_{2}^{5} p_{3}\nonumber \\&+4p_{1}p_{2}^{3}p_{3}^{3}-4p_{1}p_{2}p_{3}^{5}-3p_{1}^{4}p_{2} ^{2}\nonumber \\&-3p_{1}^{4}p_{3}^{2}-3p_{1}^{2}p_{2}^{4}-18p_{1}^{2}p_{2}^{2}p_{3} ^{2}-3p_{1}^{2}p_{3}^{4}\nonumber \\&-3p_{2}^{4}p_{3}^{2}-3p_{2}^{2}p_{3}^{4}+p_{1}^{2}p_{2}^{2}+p_{1}^{2} p_{3}^{2}+p_{2}^{2}p_{3}^{2}.\nonumber \\ \end{aligned}$$
(66)

Also,

$$\begin{aligned} q=\frac{-4096f_{4}\left( p_{1},p_{2},p_{3}\right) }{\varDelta _T^{3}}, \end{aligned}$$
(67)

where

$$\begin{aligned} f_{4}\left( p_{1},p_{2},p_{3}\right)&= 8p_{1}^{6}p_{2}^{6}-36p_{1} ^{5}p_{2}^{5}p_{3}+54p_{1}^{4}p_{2}^{4}p_{3}^{2}\nonumber \\&+8p_{1}^{5}p_{2}^{3}p_{3}+8p_{1}^{3}p_{2}^{5}p_{3}-31p_{1}^{3}p_{2} ^{3}p_{3}^{3}\nonumber \\&-6p_{1}^{4}p_{2}^{4}-18p_{1}^{4}p_{2}^{2}p_{3}^{2}-18p_{1}^{2}p_{2} ^{4}p_{3}^{2}\nonumber \\&+6p_{1}^{2}p_{2}^{2}p_{3}^{4}+9p_{1}^{3}p_{2}^{3}p_{3}+9p_{1}^{3}p_{2} p_{3}^{3}\nonumber \\&+9p_{1}p_{2}^{3}p_{3}^{3}+p_{1}^{4}p_{2}^{2}+p_{1}^{4}p_{3}^{2}+p_{1} ^{2}p_{2}^{4}\nonumber \\&+4p_{1}^{2}p_{2}^{2}p_{3}^{2}-p_{1}^{2}p_{3}^{4}+p_{2}^{4}p_{3}^{2} -p_{2}^{2}p_{3}^{4}\nonumber \\&-3p_{1}^{3}p_{2}p_{3}-3p_{1}p_{2}^{3}p_{3}-3p_{1}p_{2}p_{3}^{3}+p_{1} p_{2}p_{3}.\nonumber \\ \end{aligned}$$
(68)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vynnycky, M., Kanev, K. Mathematical Analysis of the Multisolution Phenomenon in the P3P Problem. J Math Imaging Vis 51, 326–337 (2015). https://doi.org/10.1007/s10851-014-0525-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-014-0525-0

Keywords

Navigation