Skip to main content
Log in

Viscosity Solutions of a Level-Set Method for Anisotropic Geometric Diffusion in Image Processing

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

We discuss the existence of viscosity solutions for a class of anisotropic level-set methods which can be seen as an extension of the mean-curvature motion with a nonlinear anisotropic diffusion tensor. In an earlier work (Mikula et al. in Comput. Vis. Sci. 6(4):197–209, [2004]; Preusser and Rumpf in SIAM J. Appl. Math. 62(5):1772–1793, [2002]) we have applied such methods for the denoising and enhancement of static images and image sequences. The models are characterized by the fact that—unlike the mean-curvature motion—they are capable of retaining important geometric structures like edges and corners of the level-sets. The article reviews the definition of the model and discusses its geometric behavior. The proof of the existence of viscosity solutions for these models is based on a fixed point argument which utilizes a compactness property of the diffusion tensor. For the application to image processing suitable regularizations of the diffusion tensor are presented for which the compactness assumptions of the existence proof hold. Finally, we consider the half relaxed limits of the solutions of auxiliary problems to show the compactness of the solution operator and thus the existence of a solution to the original problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alvarez, L., Guichard, F., Lions, P.L., Morel, J.M.: Axioms and fundamental equations of image processing. Arch. Ration. Mech. Anal. 123(3), 199–257 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  2. Barles, G., Perthame, B.: Discontinuous solutions of deterministic optimal stopping time problems. Model. Math. Anal. Numer. 21, 557–579 (1987)

    MATH  MathSciNet  Google Scholar 

  3. Brakke, K.A.: The Motion of a Surface by Its Mean Curvature. Mathematical Notes, vol. 20. Princeton University Press, Princeton (1978)

    MATH  Google Scholar 

  4. Chen, Y.-G., Giga, Y., Goto, S.: Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations. J. Differ. Geom. 33(3), 749–786 (1991)

    MATH  MathSciNet  Google Scholar 

  5. Clarenz, U., Diewald, U., Rumpf, M.: Nonlinear anisotropic diffusion in surface processing. In: Ertl, T., Hamann, B., Varshney, A. (eds.) Proceedings Visualization, pp. 397–405, (2000)

  6. Crandall, M.G., Ishii, H., Lions, P.L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. 27(1), 1–67 (1992)

    MATH  MathSciNet  Google Scholar 

  7. do Carmo, M.P.: Differential Geometry. Birkhäuser, Basel (1993)

    Google Scholar 

  8. Evans, L., Spruck, J.: Motion of level sets by mean curvature I. J. Differ. Geom. 33(3), 635–381 (1991)

    MATH  MathSciNet  Google Scholar 

  9. Giga, Y., Goto, S., Ishii, H., Sato, M.-H.: Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains. Ind. Math. J. 40(2), 443–470 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  10. Horn, B., Schunk, B.: Determining optical flow. Artif. Intell. 17, 185–204 (1981)

    Article  Google Scholar 

  11. Ishii, H.: Perron’s method for Hamilton-Jacobi equations. Duke Math. J. 55, 369–384 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ishii, H.: On uniqueness and existence of viscosity solutions of fully nonlinear second-order elliptic PDE’s. Commun. Pure Appl. Math. 42, 14–45 (1989)

    Article  Google Scholar 

  13. Ishii, H., Lions, P.L.: Viscosity solutions of fully nonlinear second-order elliptic partial differential equations. J. Differ. Equ. 21, 26–78 (1990)

    Article  MathSciNet  Google Scholar 

  14. Jensen, R.: The maximum principle for viscosity solutions of fully nonlinear second order partial differential equations. Arch. Ration. Mech. Anal. 101, 1–27 (1988)

    Article  MATH  Google Scholar 

  15. Mikula, K., Preusser, T., Rumpf, M.: Morphological image sequence processing. Comput. Vis. Sci. 6(4), 197–209 (2004)

    Article  MathSciNet  Google Scholar 

  16. Nagel, H.H., Enkelmann, W.: An investigation of smoothness constraints for the estimation of displacement vector fields from image sequences. IEEE Trans. Pattern Anal. Mach. Intell. 8(5), 565–593 (1986)

    Article  Google Scholar 

  17. Osher, S.J., Sethian, J.A.: Fronts propagating with curvature dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  18. Pauwels, E., Fiddelaers, P., van Gool, L.: Enhancement of planar shape through optimization of functionals for curves. IEEE Trans. Pattern Anal. Mach. Intell. 17(1), 1101–1105 (1995)

    Article  Google Scholar 

  19. Perona, P., Malik, J.: Scale space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12, 629–639 (1990)

    Article  Google Scholar 

  20. Preusser, T., Rumpf, M.: A level set method for anisotropic diffusion in 3D image processing. SIAM J. Appl. Math. 62(5), 1772–1793 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  21. Rudin, W.: Functional Analysis. McGraw-Hill, New York (1991)

    MATH  Google Scholar 

  22. Sapiro, G.: Vector (self) snakes: a geometric framework for color, texture, and multiscale image segmentation. In: Proc. IEEE Int. Conf. Image Processing (ICIP-96, Lausanne) (1996)

  23. Weickert, J., Bruhn, A., Schnörr, C.: Lucas–Kanade meets Horn–Schunck: combining local and global optic flow methods. Int. J. Comput. Visi. 61(3), 1–21 (2005)

    Google Scholar 

  24. Zeidler, E.: Applied Functional Analysis. Main Principles and Their Applications. Springer, Berlin (1995)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Preusser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Preusser, T. Viscosity Solutions of a Level-Set Method for Anisotropic Geometric Diffusion in Image Processing. J Math Imaging Vis 29, 205–217 (2007). https://doi.org/10.1007/s10851-007-0032-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-007-0032-7

Keywords

Navigation