Skip to main content
Log in

Kripke Contexts, Double Boolean Algebras with Operators and Corresponding Modal Systems

  • Published:
Journal of Logic, Language and Information Aims and scope Submit manuscript

Abstract

The notion of a context in formal concept analysis and that of an approximation space in rough set theory are unified in this study to define a Kripke context. For any context (G,M,I), a relation on the set G of objects and a relation on the set M of properties are included, giving a structure of the form ((G,R), (M,S), I). A Kripke context gives rise to complex algebras based on the collections of protoconcepts and semiconcepts of the underlying context. On abstraction, double Boolean algebras (dBas) with operators and topological dBas are defined. Representation results for these algebras are established in terms of the complex algebras of an appropriate Kripke context. As a natural next step, logics corresponding to classes of these algebras are formulated. A sequent calculus is proposed for contextual dBas, modal extensions of which give logics for contextual dBas with operators and topological contextual dBas. The representation theorems for the algebras result in a protoconcept-based semantics for these logics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of Data and Material

Not applicable

Code Availability

Not applicable.

References

  • Balbiani, P. (2012). Deciding the word problem in pure double Boolean algebras. Journal of Applied Logic, 10(3), 260–273.

    Article  Google Scholar 

  • Blackburn, P., de Rijke, M., & Venema, Y. (2001). Modal logic. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Breckner, B. E., & Săcărea, C. (2019). A topological representation of double Boolean lattices. Studia Universitatis Babeş-Bolyai Mathematica, 64(1), 11–23.

    Article  Google Scholar 

  • Burris, S., & Sankappanavar, H. P. (1981). A Course in Universal Algebra. New York, Berlin: Springer.

    Book  Google Scholar 

  • Davey, B. A., & Priestley, H. A. (2002). Introduction to lattices and order. New York: Cambridge University Press.

    Book  Google Scholar 

  • Düntsch, I., & Gediga, G. (2002). Modal-style operators in qualitative data analysis. In Vipin, K., et al. (Eds.), Proceedings of the 2002 IEEE international conference on data mining, (pp. 155–162). IEEE Computer Society.

  • Ganter, B., & Meschke, C., et al. (2011). A formal concept analysis approach to rough data tables. In J. F. Peters (Ed.), Transactions on rough sets XIV (pp. 37–61). Berlin: Springer.

    Chapter  Google Scholar 

  • Ganter, B., & Wille, R. (1999). Formal concept analysis: Mathematical foundations. Berlin: Springer.

    Book  Google Scholar 

  • Howlader, P., & Banerjee, M., et al. (2018). Algebras from semiconcepts in rough set theory. In H. S. Nguyen (Ed.), International Joint conference on rough sets (pp. 440–454). Cham: Springer.

    Chapter  Google Scholar 

  • Howlader, P., & Banerjee, M., et al. (2020a). Object oriented protoconcepts and logics for double and pure double Boolean algebras. In R. Bello (Ed.), International joint conference on rough sets (pp. 308–323). Cham: Springer.

  • Howlader, P., & Banerjee, M., et al. (2020b). Remarks on prime ideal and representation theorems for double Boolean algebras. In F. J. Valverde-Albacete (Ed.), CLA 2020. CEUR workshop proceedings (pp. 83–94).

  • Hu, K., Sui, Y., Lu, Y., Wang, J., & Shi, C., et al. (2001). Concept approximation in concept lattice. In D. Cheung (Ed.), Advances in knowledge discovery and data mining (pp. 167–173). Berlin: Springer.

    Google Scholar 

  • Jonsson, B., & Tarski, A. (1951). Boolean algebras with operators. Part I. American Journal of Mathematics, 73(4), 891–939.

    Article  Google Scholar 

  • Kent, R. E. (1994). Rough concept analysis. In W. P. Ziarko (Ed.), Rough sets, fuzzy sets and knowledge discovery (pp. 248–255). London: Springer.

    Chapter  Google Scholar 

  • Kent, R. E. (1996). Rough concept analysis: A synthesis of rough sets and formal concept analysis. Fundamenta Informaticae, 27, 169–181.

    Article  Google Scholar 

  • Kwuida, L. (2007). Prime ideal theorem for double Boolean algebras. Discussiones Mathematicae-General Algebra and Applications, 27(2), 263–275.

    Article  Google Scholar 

  • Luksch, P., & Wille, R., et al. (1991). A mathematical model for conceptual knowledge systems. In H. H. Bock (Ed.), Classification, data analysis, and knowledge organization (pp. 156–162). Berlin: Springer.

    Chapter  Google Scholar 

  • Meschke, C., et al. (2010). Approximations in concept lattices. In L. Kwuida (Ed.), Formal concept analysis (pp. 104–123). Berlin: Springer.

    Chapter  Google Scholar 

  • Pawlak, Z. (1982). Rough sets. International Journal of Computer and Information Sciences, 11(5), 341–356.

    Article  Google Scholar 

  • Pawlak, Z. (1991). Rough sets: Theoretical Aspects of reasoning about data. Dordrecht: Kluwer Academic Publishers.

    Book  Google Scholar 

  • Rasiowa, H. (1974). An algebraic approach to non-classical logics. Amsterdam, London: North-Holland Publishing Co./New York: American Elsevier Publishing Co., Inc..

  • Saquer, J., & Deogun, J. S. (2001). Concept approximations based on rough sets and similarity measures. International Journal of Applied Mathematics and Computer Science, 11(3), 655–674.

    Google Scholar 

  • Vormbrock, B., et al. (2007). A solution of the word problem for free double Boolean algebras. In S. O. Kuznetsov (Ed.), Formal concept analysis (pp. 240–270). Berlin: Springer.

    Chapter  Google Scholar 

  • Vormbrock, B., & Wille, R. (2005). Semiconcept and protoconcept algebras: The basic theorems. In B. Ganter, G. Stumme, & R. Wille (Eds.), Formal concept analysis: Foundations and applications (pp. 34–48). Berlin: Springer.

    Chapter  Google Scholar 

  • Wille, R. (1982). Restructuring lattice theory: An approach based on hierarchies of concepts. In I. Rival (Ed.), Ordered Sets NATO advanced study institutes series (series C—mathematical and physical sciences) (pp. 445–470). Dordrecht: Springer.

    Google Scholar 

  • Wille, R., et al. (2000). Boolean concept logic. In B. Ganter (Ed.), Conceptual structures: Logical, linguistic, and computational issues (pp. 317–331). Berlin: Springer.

    Chapter  Google Scholar 

  • Yao, Y. Y., & Chen, Y. (2006). Rough set approximations in formal concept analysis. In J. F. Peters, et al. (Ed.), Transactions on rough sets V (pp. 285–305). Berlin: Springer.

  • Yao, Y. Y., & Lin, T. Y. (1996). Generalization of rough sets using modal logics. Intelligent Automation and Soft Computing, 2(2), 103–119.

    Article  Google Scholar 

  • Yao, Y. Y., et al. (2004). A comparative study of formal concept analysis and rough set theory in data analysis. In S. Tsumoto (Ed.), International conference on rough sets and current trends in computing (pp. 59–68). Berlin: Springer.

    Chapter  Google Scholar 

Download references

Funding

The research of Mr. P. Howlader is supported by the Council of Scientific and Industrial Research (CSIR) India— Research Grant No. 09/092(0950)/2016-EMR-I.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohua Banerjee.

Ethics declarations

Conflict of interest

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Proofs

Appendix A: Proofs

Proof in Theorem 16, that \((D,\sqcap ,\sqcup ,\lnot ,\top ,\bot )\) is a Boolean algebra: Let \(\mathfrak {O}\) be a dBao such that for all \(a\in D\), \(\lnot a=\lrcorner a\) and \(\lnot \lnot a=a\). Let \(x,y\in D\) such that \(x\sqsubseteq y\) and \(y\sqsubseteq x\). By Proposition 4(4), \(x\sqcap x=y\sqcap y\) and \(x\sqcup x=y\sqcup y\). Using Proposition 5(3), \(\lnot \lnot x=\lnot \lnot y\) and so \(x=y\). Therefore \((D,\sqsubseteq )\) is a partially ordered set. From Definition 2(2a and 2b) it follows that \(\sqcap ,\sqcup \) is commutative, while Definition 2(3a and 3b) gives that \(\sqcap ,\sqcup \) is associative. Using Definition 2(5a) and Proposition 5(3), \(x\sqcap (x\sqcup y)=x\sqcap x=\lnot \lnot x\). So \(x\sqcap (x\sqcup y)= x\). Again using Definition 2(5b) and Proposition 5(3), \(x\sqcup (x\sqcap y)= x\). Therefore \((D,\sqcap ,\sqcup ,\lnot ,\top ,\bot )\) is a bounded complemented lattice. To show it is a distributive lattice, we show that for all \(x,y, \in D\) \(x\sqcap y= x\wedge y \) and \(x\vee y= x\sqcup y\). Rest of the proof follows from Definition 2(6a and 6b).

Let \(x,y\in D\). Then \(x,y\sqsubseteq x\sqcup y\). Proposition 5(2) gives \(\lnot (x\sqcup y)\sqsubseteq \lnot x,\lnot y\). Therefore by Proposition 4(6), \(\lnot (x\sqcup y)\sqcap \lnot y\sqsubseteq \lnot x\sqcap \lnot y\) and \(\lnot (x\sqcup y)\sqcap \lnot (x\sqcup y)\sqsubseteq \lnot (x\sqcup y)\sqcap \lnot y\). So \(\lnot (x\sqcup y)\sqcap \lnot (x\sqcup y)\sqsubseteq \lnot x\sqcap \lnot y\). By Proposition 5(1), \(\lnot (x\sqcup y)\sqsubseteq \lnot x\sqcap \lnot y,\) and by Proposition 5(2), \(\lnot (\lnot x\sqcap \lnot y)\sqsubseteq \lnot \lnot (x\sqcup y)=(x\sqcup y)\sqcap (x\sqcup y)\sqsubseteq x\sqcup y\). Hence \(x\vee y\sqsubseteq x\sqcup y\). Using Proposition 4(5) and Proposition 5(2), \(\lnot x\sqcap \lnot y\sqsubseteq \lnot x,\lnot y\). So \(\lnot \lnot x\sqsubseteq \lnot (\lnot x\sqcap \lnot y)\) and \(\lnot \lnot y\sqsubseteq \lnot (\lnot x\sqcap \lnot y)\). Therefore \(x\sqsubseteq \lnot (\lnot x\sqcap \lnot y)=x\vee y\) and \( y\sqsubseteq \lnot (\lnot x\sqcap \lnot y)=x\vee y\). Proposition 4(6) gives \(x\sqcup y \sqsubseteq x\vee y\), as \((x\vee y)\sqcup (x\vee y)=\lrcorner \lrcorner (x\vee y)=\lnot \lnot (x\vee y)=x\vee y\). So \(x\sqcup y=x\vee y\). Dually we can show that \(x\sqcap y=x\wedge y\).

Proof of Theorem 25

      2a.

Now,

Similarly we can show that \(\alpha \sqcap (\beta \sqcap \gamma )\vdash (\alpha \sqcap \beta )\sqcap \gamma \).

3a.

5a.

6a. Proof is identical to that of 5a. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Howlader, P., Banerjee, M. Kripke Contexts, Double Boolean Algebras with Operators and Corresponding Modal Systems. J of Log Lang and Inf 32, 117–146 (2023). https://doi.org/10.1007/s10849-022-09370-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10849-022-09370-1

Keywords

Mathematics Subject Classification

Navigation