Skip to main content
Log in

Li-selective calix[4]arene with trialkyl-monoacetic acid groups: effect of three alkyl branches and t-octyl groups at p-position on selectivity for Li extraction

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Trialkyl-monoacetic acid derivatives of p–t-octylcalix[4]arene and calix[4]arene were prepared to investigate the effect of the alkyl branches attached to the phenoxy oxygen atoms and the p-position on the selective extraction of Li+ over Na+. Alkyl branches on the phenoxy oxygen atoms remarkably affected the Li+ selectivity, whereas those at the p-position had less effect. The former can contribute to excluding Na+ extraction while enabling Li+ extraction. Optimal selection of the alkyl branch improves the Li+ selectivity of calix[4]arene. However, sterically-hindered p–t-octylcalix[4]arene with three 2-ethylbutyl branches exhibited opposite selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Gruber, P.W., Medina, P.A., Keoleian, G.A., Kesler, S.E., Everson, M.P., Wallington, T.J.: Global lithium availability, a constraint for electric vehicles? J. Ind. Ecol. 15(5), 760–775 (2011)

    Article  Google Scholar 

  2. Liu, G., Zhao, Z., Ghahreman, A.: Novel approaches for lithium extraction from salt-lake brines: a review. Hydrometallurgy 187, 81–100 (2019)

    Article  CAS  Google Scholar 

  3. Kesler, S.E., Gruber, P.W., Medina, P.A., Keoleian, G.A., Everson, M.P., Wallington, T.J.: Global lithium resources: relative importance of pegmatite, brine and other deposits. Ore Geol. Rev. 48, 55–69 (2012)

    Article  Google Scholar 

  4. Kaunda, R.B.: Potential environmental impacts of lithium mining. J. Energy Nat. 38(3), 237–244 (2020)

    Google Scholar 

  5. Reck, B.K., Graedel, T.E.: Challenges in metal recycling. Science 337(6095), 690–695 (2012)

    Article  CAS  PubMed  Google Scholar 

  6. Martin, G., Rentsch, L., Höck, M., Bertau, M.: Lithium market research—global supply, future demand and price development. Energy Storage Mater. 6, 171–179 (2017)

    Article  Google Scholar 

  7. Swain, B.: Separation and purification of lithium by solvent extraction and supported liquid membrane, analysis of their mechanism: a review. J. Chem. Technol. Biotechnol. 91(10), 2549–2562 (2016)

    Article  CAS  Google Scholar 

  8. Pedersen, C.J.: Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc. 89(10), 2495–2496 (1967)

    Article  CAS  Google Scholar 

  9. Frensdorff, H.K.: Stability constants of cyclic polyether complexes with univalent cations. J. Am. Chem. Soc. 93(3), 600–606 (1971)

    Article  CAS  Google Scholar 

  10. Izatt, R.M., Pawlak, K., Bradshaw, J.S., Bruening, R.L.: Thermodynamic and kinetic data for macrocycle interactions with cations and anions. Chem. Rev. 91(8), 1721–2085 (1991)

    Article  CAS  Google Scholar 

  11. Glue, K. (ed.): Macrocyclic chemistry—current trends and future perspectives. Springer, Netherlands (2005)

    Google Scholar 

  12. Bianchi, A., Bowman-James, K., García-España, E. (eds.): Supramolecular chemistry of anions. Wiley-VCH, New York (1997)

    Google Scholar 

  13. Katsuta, S., Imoto, T., Kudo, Y., Takeda, Y.: Selective extraction of lithium with a macrocyclic trinuclear complex of (1,3,5-trimethylbenzene)ruthenium(II) bridged by 2,3-dioxopyridine. Anal. Sci. 24(10), 1215–1217 (2008)

    Article  CAS  PubMed  Google Scholar 

  14. Katsuta, S., Nomura, H., Egashira, T., Kanaya, N., Kudo, Y.: Highly lithium-ion selective ionophores: macrocyclic trinuclear complexes of methoxy-substituted arene ruthenium bridged by 2,3-pyridinediolate. New J. Chem. 37(11), 3634–3639 (2013)

    Article  CAS  Google Scholar 

  15. Gutsche, C.D., Muthukrishnan, R.: Calixarenes. 1. Analysis of the product mixtures produced by the base-catalyzed condensation of formaldehyde with para-substituted phenols. J. Org. Chem. 43(25), 4905–4906 (1978)

    Article  CAS  Google Scholar 

  16. Gutsche, C.D. (ed.): Calixarenes revisited. The Royal Society of Chemistry, Cambridge (1998)

    Google Scholar 

  17. Asfari, Z., Böhmer, V., Harrowfield, J., Vicens, J. (eds.): Calixarenes 2001. Kluwer Academic Publishers, Netherlands (2001)

    Google Scholar 

  18. Lumetta, G.J., Rogers, R.D., Gopalan, A.S.: Calixarenes for separations. American Chemical Society, Washington, DC (2000)

    Book  Google Scholar 

  19. Ohto, K.: Review of the extraction of metal cations with calixarene derivatives. Solvent Extr. Res., Dev. Jpn. 17, 1–18 (2010)

    Article  CAS  Google Scholar 

  20. Ohto, K.: Review on adsorbents incorporating calixarene derivatives for metals recovery and hazardous ions removal—concept of adsorbent design and classification of adsorbents. J. Incl. Phenom. Macrocycl. Chem. 101(3), 175–194 (2021)

    Article  CAS  Google Scholar 

  21. Ohto, K.: Chap. 3 Molecular design and metal extraction behavior of calixarene compounds as host extractants. Ion Exch. Solv. Extr. 21, 81–127 (2013)

    Article  Google Scholar 

  22. Ohto, K., Furugou, H., Morisada, S., Kawakita, H., Isono, K., Inoue, K.: Stepwise recovery of molybdenum, tungsten, and vanadium by stripping using an amino-type “Trident” molecule. Solvent Extr. Ion Exch. 39, 512–532 (2021)

    Article  CAS  Google Scholar 

  23. Ohto, K.: Research on various structural effects of calix[4]arene derivatives on extractive separation behavior of metal ions. J. Ion Exch. 30(2), 17–28 (2019)

    Article  CAS  Google Scholar 

  24. Sadamatsu, H., Morisada, S., Kawakita, H., Ohto, K.: Allosteric coextraction of sodium and metal ions with calix[4]arene derivatives 3. Effect of propyl groups on size-discrimination for the second coextracted ion. Solvent Extr. Ion Exch. 33(3), 264–277 (2015)

    Article  CAS  Google Scholar 

  25. Sadamatsu, H., Hanada, T., Morisada, S., Kawakita, H., Ohto, K.: Comprehensive comparison of alkali metal extraction with a series of calix[4]arene derivatives with propyl and/or acetic acid groups. J. Incl. Phenom. Macrocycl. Chem. 84, 87–97 (2016)

    Article  CAS  Google Scholar 

  26. Ohto, K., Yano, M., Inoue, K., Yamamoto, T., Goto, M., Nakashio, F., Shinkai, S., Nagasaki, T.: Solvent extraction of trivalent rare earth metal ions with carboxylate derivatives of calixarenes. Anal. Sci. 11(6), 893–902 (1995)

    Article  CAS  Google Scholar 

  27. Gutsche, C.D., Levine, J.A.: Calixarenes. 6. Synthesis of a functionalizable calix[4]arene in a conformationally rigid cone conformation. J. Am. Chem. Soc. 104(9), 2652–2653 (1982)

    Article  CAS  Google Scholar 

  28. Ohto, K., Fuchiwaki, N., Morisada, S., Kawakita, H., Weigand, J.J., Marco, W.: Comparative extraction of aluminum group metals using acetic acid derivatives with three different-sized frameworks for coordination. Separations 8(11), 211 (2021)

    Article  CAS  Google Scholar 

  29. Ohto, K.: unpublished data, in CDCl3 at 20 °C (1995)

Download references

Acknowledgements

This work was financially supported in part by the Sasakawa Scientific Research Grant No. 25-301 from “The Japan Science Society” and by JSPS KAKENHI Grant Number (Grant-in-Aid for “Scientific Research (C) 25410192) from JSPS”. The NMR measurements were conducted at Analytical Research Center for Experimental Sciences, Saga University supported by “Project for Promoting Public Utilization of Advanced Research Infrastructure”. We would like to thank Editage (www.editage.com) for English language editing.

Funding

This study was funded by Japan Society for the Promotion of Science, KAKENHI (C) 25410192, Sasakawa Scientific Research Grant, 25-301.

Author information

Authors and Affiliations

Authors

Contributions

KO planned this research work, elucidated the extraction mechanism, and wrote the paper. HS prepared most of the reagents, measured spectra data, and carried out extraction. TH prepared one of the reagents, measured spectra data, and carried out extraction. SM discussed with spectra data of the reagents. HK supported for the extraction reaction and for drawing the theoretical lines to estimate the extraction constants and separation factors.

Corresponding author

Correspondence to Keisuke Ohto.

Ethics declarations

Conflict of interest

There are no conflict to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15250 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohto, K., Sadamatsu, H., Hanada, T. et al. Li-selective calix[4]arene with trialkyl-monoacetic acid groups: effect of three alkyl branches and t-octyl groups at p-position on selectivity for Li extraction. J Incl Phenom Macrocycl Chem (2024). https://doi.org/10.1007/s10847-024-01233-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10847-024-01233-5

Keywords

Navigation