Skip to main content
Log in

Thermodynamics, optical properties, and coordination of lanthanoids with hydroxyquinolate functionalised receptor

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Two new lanthanide complexes with the general formula [Ln(hqtsc)2Cl], where Ln = Eu3+/Tb3+ and hqtsc is (E)-2-((8-hydroxyquinolin-2-yl)methylene)hydrazine-1-carbothioamide have been synthesized. The structures of the complexes have been elucidated through IR, 1H NMR, 13C NMR and HR-mass spectroscopy. The coordination behavior of the ligand was investigated with proton and two trivalent lanthanides, Eu(III) and Tb(III), by potentiometric and spectrophotometric methods in a highly aqueous medium. The studies reveal that the two lanthanides form complexes of the type ML2H2, ML2H1, ML2, ML2H−1, and ML2H−2. The high formation constants of ML with log β = 26.55 and 27.13 indicate that these complexes will become promising candidates for chelation therapy, radioimmunotherapy, and other biomedical applications. Further, the change in colour and electronic spectra of the complexes in the presence of anions showed the selective colorimetric sensing ability towards H2PO4 (orange/yellow→, colorless) and CN (orange/yellow → red). The DFT studies were also carried out to establish the structure, bonding, and sensing mechanism of the complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 2
Scheme 3
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Long, J., Guari, Y., Ferreira, R.A.S., Carlos, L.D., Larionova, J.: Recent advances in luminescent lanthanide based Single-Molecule Magnets. Coord. Chem. Rev. 363, 57–70 (2018). https://doi.org/10.1016/j.ccr.2018.02.019

    Article  CAS  Google Scholar 

  2. Yin, F., Liu, Z., Yang, J., Zhou, L.-P., Tian, C.-B., Sun, Q.-F.: Self-assembly of triple-stranded lanthanide molecular quasi-lantern containing 2,2′-bipyridine receptor: luminescence sensing and magnetic property. ACS Omega. 8, 24477–24484 (2023). https://doi.org/10.1021/acsomega.3c02419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lacerda, S., Tóth, É.: Lanthanide complexes in molecular magnetic resonance imaging and theranostics. ChemMedChem. 12, 883–894 (2017). https://doi.org/10.1002/cmdc.201700210

    Article  CAS  PubMed  Google Scholar 

  4. Jia, J.-H., Li, Q.-W., Chen, Y.-C., Liu, J.-L., Tong, M.-L.: Luminescent single-molecule magnets based on lanthanides: design strategies, recent advances and magneto-luminescent studies. Coord. Chem. Rev. 378, 365–381 (2019). https://doi.org/10.1016/j.ccr.2017.11.012

    Article  CAS  Google Scholar 

  5. Sun, L.-N., Zhang, H.-J., Meng, Q.-G., Liu, F.-Y., Fu, L.-S., Peng, C.-Y., Yu, J.-B., Zheng, G.-L., Wang, S.-B.: Near-infrared luminescent hybrid materials doped with lanthanide (Ln) complexes (Ln = Nd, Yb) and their possible laser application. J. Phys. Chem. B. 109, 6174–6182 (2005). https://doi.org/10.1021/jp044591h

    Article  CAS  PubMed  Google Scholar 

  6. Rohini, Baral, M., Kanungo, B.K.: Structural effect on the central cavity of a pendent 12N3 macrocycle on bonding and photophysical properties of Eu3+ and Tb3+ complexes: experimental and theoretical study. J. Mol. Struct. 1184, 324–338 (2019). https://doi.org/10.1016/j.molstruc.2019.02.032

  7. Bünzli, J.-C.G., Piguet, C.: Taking advantage of luminescent lanthanide ions. Chem. Soc. Rev. 34, 1048 (2005). https://doi.org/10.1039/b406082m

    Article  CAS  PubMed  Google Scholar 

  8. Carlos, L.D., Ferreira, R.A.S., Bermudez, V.D.Z., Ribeiro, S.J.L.: Lanthanide-containing light-emitting organic–inorganic hybrids: a bet on the future. Adv Mater. 21, 509–534 (2009). https://doi.org/10.1002/adma.200801635

    Article  CAS  PubMed  Google Scholar 

  9. Vigato, P.A., Peruzzo, V., Tamburini, S.: The evolution of β-diketone or β-diketophenol ligands and related complexes. Coord. Chem. Rev. 253, 1099–1201 (2009). https://doi.org/10.1016/j.ccr.2008.07.013

    Article  CAS  Google Scholar 

  10. Lacoste, R.G., Christoffers, G.V., Martell, A.E.: New multidentate ligands. II. Amino acids containing α-pyridyl groups. J. Am. Chem. Soc. 87, 2385–2388 (1965). https://doi.org/10.1021/ja01089a015

    Article  CAS  Google Scholar 

  11. Vinusha, H.M., Kollur, S.P., Revanasiddappa, H.D., Ramu, R., Shirahatti, P.S., Nagendra Prasad, M.N., Chandrashekar, S., Begum, M.: Preparation, spectral characterization and biological applications of Schiff base ligand and its transition metal complexes. Results Chem. 1, 100012 (2019). https://doi.org/10.1016/j.rechem.2019.100012

    Article  CAS  Google Scholar 

  12. Abad-Galán, L., Cieslik, P., Comba, P., Gast, M., Maury, O., Neupert, L., Roux, A., Wadepohl, H.: Excited state properties of lanthanide(III) complexes with a nonadentate bispidine ligand. Chemistry 27, 10303–10312 (2021). https://doi.org/10.1002/chem.202005459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Song, Y., Xu, H., Chen, W., Zhan, P., Liu, X.: 8-Hydroxyquinoline: a privileged structure with a broad-ranging pharmacological potential. Med. Chem. Commun. 6, 61–74 (2015). https://doi.org/10.1039/C4MD00284A

    Article  CAS  Google Scholar 

  14. Côrte-Real, L., Pósa, V., Martins, M., Colucas, R., May, N.V., Fontrodona, X., Romero, I., Mendes, F., Pinto Reis, C., Gaspar, M.M., Pessoa, J.C., Enyedy, É.A., Correia, I.: Cu(II) and Zn(II) complexes of new 8-hydroxyquinoline Schiff bases: investigating their structure, solution speciation, and anticancer potential. Inorg. Chem. 62, 11466–11486 (2023). https://doi.org/10.1021/acs.inorgchem.3c01066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Prachayasittikul, V., Prachayasittikul, V., Prachayasittikul, S., Ruchirawat, S.: 8-Hydroxyquinolines: a review of their metal chelating properties and medicinal applications. DDDT (2013). https://doi.org/10.2147/DDDT.S49763

    Article  PubMed  PubMed Central  Google Scholar 

  16. Yang, Y., Zhou, Z., Wei, Z.-Z., Qin, Q.-P., Yang, L., Liang, H.: High anticancer activity and apoptosis- and autophagy-inducing properties of novel lanthanide(III) complexes bearing 8-hydroxyquinoline-N-oxide and 1,10-phenanthroline. Dalton Trans. 50, 5828–5834 (2021). https://doi.org/10.1039/D1DT00450F

    Article  CAS  PubMed  Google Scholar 

  17. Qin, Q.-P., Wang, Z.-F., Tan, M.-X., Huang, X.-L., Zou, H.-H., Zou, B.-Q., Shi, B.-B., Zhang, S.-H.: Complexes of lanthanides (III) with mixed 2,2′-bipyridyl and 5,7-dibromo-8-quinolinoline chelating ligands as a new class of promising anticancer agents. Metallomics. 11, 1005–1015 (2019). https://doi.org/10.1039/c9mt00037b

    Article  CAS  PubMed  Google Scholar 

  18. Xu, H.-B., Li, J., Shi, L.-X., Chen, Z.-N.: Sensitized luminescence in dinuclear lanthanide(iii) complexes of bridging 8-hydroxyquinoline derivatives with different electronic properties. Dalton Trans. 40, 5549 (2011). https://doi.org/10.1039/c0dt01663b

    Article  CAS  PubMed  Google Scholar 

  19. Li, Q., Zhang, J., Cai, Y., Qu, W., Gao, G., Lin, Q., Yao, H., Zhang, Y., Wei, T.: A facile colorimetric and fluorescent cyanide chemosensor: utilization of the nucleophilic addition induced by resonance-assisted hydrogen bond. Tetrahedron. 71, 857–862 (2015). https://doi.org/10.1016/j.tet.2014.12.047

    Article  CAS  Google Scholar 

  20. Misra, R., Jadhav, T., Dhokale, B., Mobin, S.M.: Colorimetric and fluorimetric detection of fluoride and cyanide ions using tri and tetra coordinated boron containing chromophores. Dalton Trans. 44, 16052–16060 (2015). https://doi.org/10.1039/C5DT02356D

    Article  CAS  PubMed  Google Scholar 

  21. Liu, X.-M., Li, Y.-P., Zhang, Y.-H., Zhao, Q., Song, W.-C., Xu, J., Bu, X.-H.: Ratiometric fluorescence detection of fluoride ion by indole-based receptor. Talanta. 131, 597–602 (2015). https://doi.org/10.1016/j.talanta.2014.08.017

    Article  CAS  PubMed  Google Scholar 

  22. Miyaji, H., Sato, W., Sessler, J.L.: Naked-eye detection of anions in dichloromethane: colorimetric anion sensors based on Calix[4]pyrrole. Angew. Chem. Int. Ed. 39, 1777–1780 (2000). https://doi.org/10.1002/(SICI)1521-3773(20000515)39:10%3c1777::AID-ANIE1777%3e3.0.CO;2-E

    Article  CAS  Google Scholar 

  23. Miyaji, H., Sato, W., Sessler, J.L., Lynch, V.M.: A ‘building block’ approach to functionalized calix[4]pyrroles. Tetrahedron Lett. 41, 1369–1373 (2000). https://doi.org/10.1016/S0040-4039(99)02295-9

    Article  CAS  Google Scholar 

  24. Ghosh, T., Maiya, B.G., Samanta, A.: A colorimetric chemosensor for both fluoride and transition metal ions based on dipyrrolyl derivative. Dalton Trans. (2006). https://doi.org/10.1039/b510469f

    Article  PubMed  Google Scholar 

  25. Sessler, J.L., Andrioletti, B., Anzenbacher, P., Black, C., Eller, L., Furuta, H., Jursíková, K., Maeda, H., Marquez, M., Mizuno, T., Try, A.: 2,3-Dipyrrolylquinoxaline-based anion sensors. In: Moyer, B.A., Singh, R.P. (eds.) Fundamentals and Applications of Anion Separations, pp. 71–85. Springer, Boston (2004)

    Chapter  Google Scholar 

  26. Kim, T., Swager, T.M.: A fluorescent self-amplifying wavelength-responsive sensory polymer for fluoride ions. Angew. Chem. Int. Ed. 42, 4803–4806 (2003). https://doi.org/10.1002/anie.200352075

    Article  CAS  Google Scholar 

  27. Hassell-Hart, S., Speranzini, E., Srikwanjai, S., Hossack, E., Roe, S.M., Fearon, D., Akinbosede, D., Hare, S., Spencer, J.: Synthesis of a thiazole library via an iridium-catalyzed sulfur ylide insertion reaction. Org. Lett. 24, 7924–7927 (2022). https://doi.org/10.1021/acs.orglett.2c02996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. James, T.D., Sandanayake, K.R.A.S., Shinkai, S.: Novel photoinduced electron-transfer sensor for saccharides based on the interaction of boronic acid and amine. J. Chem. Soc. Chem. Commun. (1994). https://doi.org/10.1039/c39940000477

    Article  Google Scholar 

  29. Yamamoto, H., Momiyama, N.: Rich chemistry of nitroso compounds. Chem. Commun. (2005). https://doi.org/10.1039/b503212c

    Article  Google Scholar 

  30. Otón, F., Tárraga, A., Molina, P.: A bis-guanidine-based multisignaling sensor molecule that displays redox-ratiometric behavior or fluorescence enhancement in the presence of anions and cations. Org. Lett. 8, 2107–2110 (2006). https://doi.org/10.1021/ol060495i

    Article  CAS  PubMed  Google Scholar 

  31. Lowe, A.J., Long, B.M., Pfeffer, F.M.: Conformationally preorganised hosts for anions using norbornane and fused [n]polynorbornane frameworks. Chem. Commun. 49, 3376 (2013). https://doi.org/10.1039/c3cc40702k

    Article  CAS  Google Scholar 

  32. Rosenthal, A.K., Ryan, L.M.: Nonpharmacologic and pharmacologic management of CPP crystal arthritis and BCP Arthropathy and periarticular syndromes. Rheum. Dis. Clin. N. Am. 40, 343–356 (2014). https://doi.org/10.1016/j.rdc.2014.01.010

    Article  Google Scholar 

  33. Yung, B.Y., Kornberg, A.: Membrane attachment activates dnaA protein, the initiation protein of chromosome replication in Escherichia coli. Proc. Natl Acad. Sci. U.S.A. 85, 7202–7205 (1988). https://doi.org/10.1073/pnas.85.19.7202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shen, X., Mizuguchi, G., Hamiche, A., Wu, C.: A chromatin remodelling complex involved in transcription and DNA processing. Nature. 406, 541–544 (2000). https://doi.org/10.1038/35020123

    Article  CAS  PubMed  Google Scholar 

  35. Chowdhury, B., Khatua, S., Dutta, R., Chakraborty, S., Ghosh, P.: Bis-heteroleptic ruthenium(II) complex of a triazole ligand as a selective probe for phosphates. Inorg. Chem. 53, 8061–8070 (2014). https://doi.org/10.1021/ic5010598

    Article  CAS  PubMed  Google Scholar 

  36. Lohar, S., Pal, S., Mukherjee, M., Maji, A., Demitri, N., Chattopadhyay, P.: A turn-on green channel Zn 2+ sensor and the resulting zinc(II) complex as a red channel HPO42− ion sensor: a new approach. RSC Adv. 7, 25528–25534 (2017). https://doi.org/10.1039/C7RA02175E

    Article  CAS  Google Scholar 

  37. Sen, S., Mukherjee, M., Chakrabarty, K., Hauli, I., Mukhopadhyay, S.K., Chattopadhyay, P.: Cell permeable fluorescent receptor for detection of H2PO4 in aqueous solvent. Org. Biomol. Chem. 11, 1537 (2013). https://doi.org/10.1039/c2ob27201f

    Article  CAS  PubMed  Google Scholar 

  38. Albaaj, F., Hutchison, A.J.: Hyperphosphataemia in renal failure: causes, consequences and current management. Drugs. 63, 577–596 (2003). https://doi.org/10.2165/00003495-200363060-00005

    Article  PubMed  Google Scholar 

  39. Young, E.W., Albert, J.M., Satayathum, S., Goodkin, D.A., Pisoni, R.L., Akiba, T., Akizawa, T., Kurokawa, K., Bommer, J., Piera, L., Port, F.K.: Predictors and consequences of altered mineral metabolism: the Dialysis Outcomes And Practice Patterns Study. Kidney Int. 67, 1179–1187 (2005). https://doi.org/10.1111/j.1523-1755.2005.00185.x

    Article  CAS  PubMed  Google Scholar 

  40. Badugu, R.: A wavelength-ratiometric pH sensitive probe based on the boronic acid moiety and suppressed sugar response. Dyes Pigments. 61, 227–234 (2004). https://doi.org/10.1016/j.dyepig.2003.10.011

    Article  CAS  PubMed  Google Scholar 

  41. DiCesare, N., Lakowicz, J.R.: New sensitive and selective fluorescent probes for fluoride using boronic acids. Anal. Biochem. 301, 111–116 (2002). https://doi.org/10.1006/abio.2001.5476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Badugu, R., Lakowicz, J.R., Geddes, C.D.: Cyanide-sensitive fluorescent probes. Dyes Pigments. 64, 49–55 (2005). https://doi.org/10.1016/j.dyepig.2004.04.002

    Article  CAS  PubMed  Google Scholar 

  43. Takano, R.: The treatment of leprosy with cyanocuprol. J. Exp. Med. 24, 207–211 (1916). https://doi.org/10.1084/jem.24.2.207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Erdemir, S., Malkondu, S.: On-site and low-cost detection of cyanide by simple colorimetric and fluorogenic sensors: smartphone and test strip applications. Talanta. 207, 120278 (2020). https://doi.org/10.1016/j.talanta.2019.120278

    Article  CAS  PubMed  Google Scholar 

  45. Parker, D.: Luminescent lanthanide sensors for pH, pO2 and selected anions. Coord. Chem. Rev. 205, 109–130 (2000). https://doi.org/10.1016/S0010-8545(00)00241-1

    Article  CAS  Google Scholar 

  46. Pope, S.J.A., Burton-Pye, B.P., Berridge, R., Khan, T., Skabara, P.J., Faulkner, S.: Self-assembly of luminescent ternary complexes between seven-coordinate lanthanide(III) complexes and chromophore bearing carboxylates and phosphonates. Dalton Trans. (2006). https://doi.org/10.1039/b600598e

    Article  PubMed  Google Scholar 

  47. Gunnlaugsson, T., Leonard, J.P.: Responsive lanthanide luminescent cyclen complexes: from switching/sensing to supramolecular architectures. Chem. Commun. (2005). https://doi.org/10.1039/b418196d

    Article  Google Scholar 

  48. Piccinelli, F., Leonzio, M., Bettinelli, M., Monari, M., Grazioli, C., Melchior, A., Tolazzi, M.: Tuning of the sensing properties of luminescent Eu3+ complexes towards the nitrate anion. Dalton Trans. 45, 3310–3318 (2016). https://doi.org/10.1039/C5DT04665C

    Article  CAS  PubMed  Google Scholar 

  49. Leonard, J.P., Gunnlaugsson, T.: Luminescent Eu(III) and Tb(III) complexes: developing lanthanide luminescent-based devices. J. Fluoresc. 15, 585–595 (2005). https://doi.org/10.1007/s10895-005-2831-9

    Article  CAS  PubMed  Google Scholar 

  50. Huang, S.-Y., Qian, M., Pierre, V.C.: A combination of factors: tuning the affinity of Europium receptors for phosphate in water. Inorg. Chem. 58, 16087–16099 (2019). https://doi.org/10.1021/acs.inorgchem.9b02650

    Article  CAS  PubMed  Google Scholar 

  51. Martinon, T.L.M., Ramakrishnam Raju, M.V., Pierre, V.C.: Kinetically Inert macrocyclic Europium(III) receptors for phosphate. Inorg. Chem. 62, 10064–10076 (2023). https://doi.org/10.1021/acs.inorgchem.2c03833

    Article  CAS  PubMed  Google Scholar 

  52. Wang, Y.-W., Liu, S.-B., Yang, Y.-L., Wang, P.-Z., Zhang, A.-J., Peng, Y.: A Terbium(III)-complex-based on–off fluorescent chemosensor for phosphate anions in aqueous solution and its application in molecular logic gates. ACS Appl. Mater. Interfaces. 7, 4415–4422 (2015). https://doi.org/10.1021/am5089346

    Article  CAS  PubMed  Google Scholar 

  53. Yang, D.-D., Lu, L.-P., Zhu, M.-L.: A design for detecting phosphate ions in aqueous solution by luminescent Tb-coordination polymer. Inorg. Chim. Acta 515, 120030 (2021). https://doi.org/10.1016/j.ica.2020.120030

    Article  CAS  Google Scholar 

  54. Hickey, J.L., Crouch, P.J., Mey, S., Caragounis, A., White, J.M., White, A.R., Donnelly, P.S.: Copper(II) complexes of hybrid hydroxyquinoline-thiosemicarbazone ligands: GSK3β inhibition due to intracellular delivery of copper. Dalton Trans. 40, 1338–1347 (2011). https://doi.org/10.1039/C0DT01176B

    Article  CAS  PubMed  Google Scholar 

  55. Rohini, Baral, M., Kanungo, B.K.: Experimental and theoretical studies on structure, bonding and luminescence properties of Eu(III) and Tb(III) complexes of a new macrocyclic based 8HQ ligand. J. Coord. Chem. 72, 1497–1523 (2019). https://doi.org/10.1080/00958972.2019.1605064

  56. Vogel, A.I., Jeffery, G.H., Bassett, J., Mendham, J., Denney, R.C.: Vogel’s Textbook of Quantitative Chemical Analysis, p. 480. Longman Scientific & Technical, Harlow (1991).

  57. Chaudhary, R.G., Ali, P., Gandhare, N.V., Tanna, J.A., Juneja, H.D.: Thermal decomposition kinetics of some transition metal coordination polymers of fumaroyl bis (paramethoxyphenylcarbamide) using DTG/DTA techniques. Arab. J. Chem. 12, 1070–1082 (2019). https://doi.org/10.1016/j.arabjc.2016.03.008

    Article  CAS  Google Scholar 

  58. Gomes, L.M.F., Vieira, R.P., Jones, M.R., Wang, M.C.P., Dyrager, C., Souza-Fagundes, E.M., Da Silva, J.G., Storr, T., Beraldo, H.: 8-Hydroxyquinoline Schiff-base compounds as antioxidants and modulators of copper-mediated Aβ peptide aggregation. J. Inorg. Biochem. 139, 106–116 (2014). https://doi.org/10.1016/j.jinorgbio.2014.04.011

    Article  CAS  PubMed  Google Scholar 

  59. Khatua, S., Choi, S.H., Lee, J., Kim, K., Do, Y., Churchill, D.G.: Aqueous fluorometric and colorimetric sensing of phosphate ions by a fluorescent dinuclear zinc complex. Inorg. Chem. 48, 2993–2999 (2009). https://doi.org/10.1021/ic8022387

    Article  CAS  PubMed  Google Scholar 

  60. Te Velde, G., Bickelhaupt, F.M., Baerends, E.J., Fonseca Guerra, C., Van Gisbergen, S.J.A., Snijders, J.G., Ziegler, T.: Chemistry with ADF. J. Comput. Chem. 22, 931–967 (2001). https://doi.org/10.1002/jcc.1056

    Article  CAS  Google Scholar 

  61. Devine, J.M., Lane, F.W.: The use of the carius method for the determination of sulfur in the less volatile petroleum oils. J. Am. Chem. Soc. 50, 1707–1710 (1928). https://doi.org/10.1021/ja01393a029

    Article  CAS  Google Scholar 

  62. Lyle, S.J., Rahman, Md.M.: Complexometric titration of yttrium and the lanthanons—IA comparison of direct methods. Talanta. 10, 1177–1182 (1963). https://doi.org/10.1016/0039-9140(63)80170-8

    Article  CAS  Google Scholar 

  63. Gans, P., Sabatini, A., Vacca, A.: Investigatio of equilibria in solution. Determination of equilibrium constants with the HYPERQUAD suite of programs. Talanta 43, 1739–1753 (1996). https://doi.org/10.1016/0039-9140(96)01958-3

    Article  CAS  PubMed  Google Scholar 

  64. Alderighi, L., Gans, P., Ienco, A., Peters, D., Sabatini, A., Vacca, A.: Hyperquad simulation and speciation (HySS): a utility program for the investigation of equilibria involving soluble and partially soluble species. Coord. Chem. Rev. 184, 311–318 (1999). https://doi.org/10.1016/S0010-8545(98)00260-4

    Article  CAS  Google Scholar 

  65. Segoviano-Garfias, J.J.N., Zanor, G.A., Ávila-Ramos, F., Bivián-Castro, E.Y., Rubio-Jiménez, C.A.: Spectrophotometric determination of formation constants of Iron(III) complexes with several ligands. Chemistry. 4, 701–716 (2022). https://doi.org/10.3390/chemistry4030050

    Article  CAS  Google Scholar 

  66. Benesi, H.A., Hildebrand, J.H.: A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J. Am. Chem. Soc. 71, 2703–2707 (1949). https://doi.org/10.1021/ja01176a030

    Article  CAS  Google Scholar 

  67. Currie, L.A.: Detection and quantification limits: origins and historical overview1Adapted from the Proceedings of the 1996 Joint Statistical Meetings (American Statistical Association, 1997). Original title: “Foundations and future of detection and quantification limits”. Contribution of the National Institute of Standards and Technology; not subject to copyright.1. Anal. Chim. Acta 391, 127–134 (1999). https://doi.org/10.1016/S0003-2670(99)00105-1

  68. Taylor, M.G., Burrill, D.J., Janssen, J., Batista, E.R., Perez, D., Yang, P.: Architector for high-throughput cross-periodic table 3D complex building. Nat Commun. 14, 6176 (2023). https://doi.org/10.1038/s41467-023-42034-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Munguba, G.H.L., Urquiza-Carvalho, G.A., Silva, F.T., Simas, A.M.: The complex build algorithm to set up starting structures of lanthanoid complexes with stereochemical control for molecular modeling. Sci. Rep. 11, 21493 (2021). https://doi.org/10.1038/s41598-021-99525-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hanwell, M.D., Curtis, D.E., Lonie, D.C., Vandermeersch, T., Zurek, E., Hutchison, G.R.: Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 4, 17 (2012). https://doi.org/10.1186/1758-2946-4-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Rappe, A.K., Casewit, C.J., Colwell, K.S., Goddard, W.A., Skiff, W.M.: UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114, 10024–10035 (1992). https://doi.org/10.1021/ja00051a040

    Article  CAS  Google Scholar 

  72. Dutra, J.D.L., Filho, M.A.M., Rocha, G.B., Freire, R.O., Simas, A.M., Stewart, J.J.P.: Sparkle/PM7 lanthanide parameters for the modeling of complexes and materials. J. Chem. Theory Comput. 9, 3333–3341 (2013). https://doi.org/10.1021/ct301012h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Freire, R.O., Simas, A.M.: Sparkle/PM6 parameters for all lanthanide trications from La(III) to Lu(III). J. Chem. Theory Comput. 6, 2019–2023 (2010). https://doi.org/10.1021/ct100192c

    Article  CAS  PubMed  Google Scholar 

  74. Peverati, R., Truhlar, D.G.: An improved and broadly accurate local approximation to the exchange–correlation density functional: the MN12-L functional for electronic structure calculations in chemistry and physics. Phys. Chem. Chem. Phys. 14, 13171 (2012). https://doi.org/10.1039/c2cp42025b

    Article  CAS  PubMed  Google Scholar 

  75. Van Lenthe, E., Baerends, E.J.: Optimized Slater-type basis sets for the elements 1–118. J Comput Chem. 24, 1142–1156 (2003). https://doi.org/10.1002/jcc.10255

    Article  CAS  PubMed  Google Scholar 

  76. Rosa, A., Baerends, E.J., Van Gisbergen, S.J.A., Van Lenthe, E., Groeneveld, J.A., Snijders, J.G.: Electronic spectra of M(CO)6 (M = Cr, Mo, W) revisited by a relativistic TDDFT approach. J. Am. Chem. Soc. 121, 10356–10365 (1999). https://doi.org/10.1021/ja990747t

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Neha Kumari: Experimental work, drafting; Minati Baral: Concept, supervision, and manuscript correction; Dinesh Kumar: supervision; B K Kanungo: validation and correction.

Corresponding author

Correspondence to Minati Baral.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1730 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, N., Baral, M., Kumar, D. et al. Thermodynamics, optical properties, and coordination of lanthanoids with hydroxyquinolate functionalised receptor. J Incl Phenom Macrocycl Chem (2024). https://doi.org/10.1007/s10847-024-01230-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10847-024-01230-8

Keywords

Navigation