Skip to main content
Log in

Highly conductive MXene/Ag nanowire/UV-resin/polycarbonate flexible transparent electrode for capacitive sensors

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

In the field of wearable electronics, MXenes have emerged as promising two-dimensional (2D) materials, exhibiting exceptional properties such as metallic conductivity, water dispersibility, thermal stability, mechanical stability, and high optical transmittance. In this study, we present a unique flexible transparent conductive electrode (FTCE) composed of MXene, Ag nanowire (AgNW), ultraviolet resin (UV-resin), and polycarbonate (PC). Our fabrication process involves a roll-to-roll process and entirely solution-based methods including UV-resin dispensing, AgNW solution coating, and FTCE dipping in an MXene solution, providing a cost-effective manufacturing approach. Notably, compared to the pure AgNW-based FTCE, the proposed FTCE incorporating an MXene concentration of 5 mg/mL showed a significant enhancement of 40% in electrical conductivity, while the FTCE with a concentration of 2 mg/mL exhibited an improved figure of merit. Furthermore, we successfully demonstrate an embedded system integrating the FTCE-based capacitive touch and proximity sensor. These achievements in optoelectronic performance signify a tremendous potential for the development of high-performance flexible devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kang, M., Kim, J., Jang, B., Chae, Y., Kim, J.-H., Ahn, J.-H.: Graphene-based three-dimensional capacitive touch sensor for wearable electronics. ACS Nano. 11, 7950–7957 (2017)

    Article  CAS  PubMed  Google Scholar 

  2. Tang, H., Feng, H., Wang, H., Wan, X., Liang, J., Chen, Y.: Highly conducting MXene–silver nanowire transparent electrodes for flexible organic solar cells. ACS Appl. Mater. Interfaces. 11, 25330–25337 (2019)

    Article  CAS  PubMed  Google Scholar 

  3. Pasquier, A.D., Unalan, H.E., Kanwal, A., Miller, S., Chhowalla, M.: Conducting and transparent single-wall carbon nanotube electrodes for polymer-fullerene solar cells. Appl. Phys. Lett. 87, 203511 (2005)

    Article  Google Scholar 

  4. Shin, D.-K., Park, J.: Angular dependence of Moiré fringes induced by metal grids for touch screen panels. J. Disp. Technol. 11, 110–117 (2015)

    Article  Google Scholar 

  5. Ramberg, E.: Elimination of moiré effects in Tr-color kinescopes. Proc. RE. 40, 916–923 (1952)

    Google Scholar 

  6. Wang, P., Zhang, C., Wu, M., Zhang, J., Ling, X., Yang, L.: Scalable solution-processed fabrication approach for high-performance silver Nanowire/MXene hybrid transparent conductive films. Nanomater. 11, 1360 (2021)

    Article  Google Scholar 

  7. Hajian, S., Maddipatla, D., Narakathu, B., Atashbar, M.: MXene-based Flex. Sensors: Rev. Front Sens. 3, 1006749 (2022)

    Google Scholar 

  8. Lyu, B., Kim, M., Jing, H., Kang, J., Qian, C., Lee, S., Cho, J.H.: Large-area MXene electrode array for flexible electronics. ACS nano. 13, 11392–11400 (2019)

    Article  CAS  PubMed  Google Scholar 

  9. Fu, X., Wang, L., Zhao, L., Yuan, Z., Zhang, Y., Wang, D., Wang, D., Li, J., Li, D., Shulga, V.: Controlled assembly of MXene nanosheets as an electrode and active layer for high-performance electronic skin. Adv. Funct. Mater. 31, 2010533 (2021)

    Article  CAS  Google Scholar 

  10. Ma, Y., Yue, Y., Zhang, H., Cheng, F., Zhao, W., Rao, J., Luo, S., Wang, J., Jiang, X., Liu, Z.: 3D synergistical MXene/reduced graphene oxide aerogel for a piezoresistive sensor. ACS Nano. 12, 3209–3216 (2018)

    Article  CAS  PubMed  Google Scholar 

  11. Liu, H., Chen, X., Zheng, Y., Zhang, D., Zhao, Y., Wang, C., Pan, C., Liu, C., Shen, C.: Lightweight, superelastic, and hydrophobic polyimide nanofiber/MXene composite aerogel for wearable piezoresistive sensor and oil/water separation applications. Adv. Funct. Mater. 31, 2008006 (2021)

    Article  CAS  Google Scholar 

  12. Yuan, W., Yang, K., Peng, H., Li, F., Yin, F.: A flexible VOCs sensor based on a 3D mxene framework with a high sensing performance. J. Mater. Chem. A. 6, 18116–18124 (2018)

    Article  CAS  Google Scholar 

  13. Song, D., Jiang, X., Li, Y., Lu, X., Luan, S., Wang, Y., Li, Y., Gao, F.: Metal – organic frameworks-derived MnO2/Mn3O4 microcuboids with hierarchically ordered nanosheets and Ti3C2 MXene/Au NPs composites for electrochemical pesticide detection. J. Hazard. Mater. 373, 367–376 (2019)

    Article  CAS  PubMed  Google Scholar 

  14. Wei, W., Lin, H., Hao, T., Su, X., Jiang, X., Wang, S., Hu, Y., Guo, Z.: Dual-mode ECL/SERS immunoassay for ultrasensitive determination of Vibrio vulnificus based on multifunctional MXene. Sens. Actuators B: Chem. 332, 129525 (2021)

    Article  CAS  Google Scholar 

  15. Park, Y., Kim, J.P., Kim, W.H., Song, Y.H., Kim, S., Jeong, H.-J.: Large-scale transfer of Ag nanowires from PET to PC film using a roll-to-roll UV lamination process for a capacitive touch sensor. RSC Adv. 13, 1551–1557 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Im, H.-G., An, B.W., Jin, J., Jang, J., Park, Y.-G., Park, J.-U., Bae, B.-S.: A high-performance, flexible and robust metal nanotrough-embedded transparent conducting film for wearable touch screen panels. Nanoscale. 8, 3916–3922 (2016)

    Article  CAS  PubMed  Google Scholar 

  17. Habib, T., Zhao, X., Shah, S.A., Chen, Y., Sun, W., An, H., Lutkenhaus, J.L., Radovic, M., Green, M.J.: Oxidation stability of Ti3C2Tx MXene nanosheets in solvents and composite films. Npj 2D mater. Appl. 3, 8 (2019)

    Google Scholar 

  18. Tan, D., Jiang, C., Cao, X., Sun, N., Li, Q., Bi, S., Song, J.: Recent advances in MXene-based force sensors: A mini-review. RSC Adv. 11, 19169–19184 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li, Y., Guo, S., Yang, H., Chao, Y., Jiang, S., Wang, C.: One-step synthesis of ultra-long silver nanowires of over 100 µm and their application in flexible transparent conductive films. RSC Adv. 8, 8057–8063 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vijayalakshmi, K., Mekala, M., Yoganand, C., Navaneetha Pandiyaraj, K.: Studies on modification of surface properties in polycarbonate (PC) film induced by DC glow discharge plasma. Int. J. Polym. Sci. (2011) (2011)

  21. Tariq, A., Ali, S.I., Akinwande, D., Rizwan, S.: Efficient visible-light photocatalysis of 2D-MXene nanohybrids with Gd3+- and Sn4+-codoped bismuth ferrite. ACS Omega. 3, 13828–13836 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kamysbayev, V., Filatov, A.S., Hu, H., Rui, X., Lagunas, F., Wang, D., Klie, R.F., Talapin, D.V.: Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science. 369, 979–983 (2020)

    Article  CAS  PubMed  Google Scholar 

  23. Naguib, M., Unocic, R.R., Armstrong, B.L., Nanda, J.: Large-scale delamination of multi-layers transition metal carbides and carbonitrides MXenes. Dalton Trans. 44, 9353–9358 (2015)

    Article  CAS  PubMed  Google Scholar 

  24. Li, X., Gittleson, F., Carmo, M., Sekol, R.C., Taylor, A.D.: Scalable fabrication of multifunctional freestanding carbon nanotube/polymer composite thin films for energy conversion. ACS Nano. 6, 1347–1356 (2012)

    Article  CAS  PubMed  Google Scholar 

  25. Jeong, H.-J., Kim, K., Kim, H.W., Park, Y.: Classification between normal and cancerous human urothelial cells by using Micro-Dimensional Electrochemical Impedance Spectroscopy Combined with Machine Learning. Sensors. 22, 7969 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhou, Z., Zhang, W., Zhang, J., Zhang, Y., Yin, X., He, B.: Flexible and self-adhesive strain sensor based on GNSs/MWCNTs coated stretchable fabric for gesture monitoring and recognition. Sens. Actuator A Phys. 349, 114004 (2023)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. RS-2023-00210498 & RS-2023-00277502). This research was also supported by a Chonnam National University (Smart Plant Reliability Center) grant funded by the Ministry of Education, South Korea (2020R1A6C101B197). We acknowledge the support of the Jeonnam Yeosu Industry-University Convergence Agency for providing cleanroom facilities. Hyeon Woo Kim and Yangkyu Park are the authors to whom correspondence should be addressed.

Author information

Authors and Affiliations

Authors

Contributions

Ho-Jung Jeong wrote the main manuscript text and Young Hyun Song contributed to the experiments. Hyeon Woo Kim and Yangkyu Park came up with the idea of this study and supervised the whole step of writing this paper. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Hyeon Woo Kim or Yangkyu Park.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, HJ., Song, Y.H., Kim, H.W. et al. Highly conductive MXene/Ag nanowire/UV-resin/polycarbonate flexible transparent electrode for capacitive sensors. J Incl Phenom Macrocycl Chem (2023). https://doi.org/10.1007/s10847-023-01203-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10847-023-01203-3

Keywords

Navigation