Skip to main content
Log in

Supramolecular assembling systems of hemoproteins using chemical modifications

  • Review Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Inspired by protein assemblies in biological systems, various artificial protein assemblies have been constructed in these decades. Hemoprotein containing porphyrin iron complex, heme, is a unique building block of the artificial protein assemblies due to the structures, physicochemical properties and functions. In the case of hemoprotein containing b-type heme, the heme cofactor is non-covalently bound to the heme-binding site, heme pocket, in the protein matrix. This review summaries our efforts to utilize heme–heme pocket interactions toward supramolecular hemoprotein assembling systems with various structures and/or functions. Simple monomeric hemoprotein, mainly cytochrome b562, was employed as a useful building block and synthetic heme was attached to the cysteine-introduced variant to form a building block showing self-assembling behavior by interprotein heme–heme pocket interactions. The modulations of linker between synthetic heme and protein surface and/or protein modification site contribute to provide various structures such as fiber, ring, branched shape and micelles. Furthermore, hexameric hemoprotein was utilized for another building block with supramolecular approach toward light harvesting system by replacement of heme cofactors with porphyrinoid photosensitizers. A series of artificial hemoprotein assembling systems will contribute to new-type of functional biomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Pieters, B.J.G.E., van Eldijk, M.B., Nolte, R.J.M., Mecinovic, J.: Natural supramolecular protein assemblies. Chem. Soc. Rev. 45, 24–39 (2016)

    Article  CAS  PubMed  Google Scholar 

  2. Kuan, S.L., Bergamini, F.R.G., Weil, T.: Functional protein nanostructures: a chemical toolbox. Chem. Soc. Rev. 47, 9069–9105 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Brunsveld, L., Folmer, B.J.B., Meijer, E.W., Sijbesma, R.P.: Supramolecular polymers. Chem. Rev. 101, 4071–4098 (2001)

    Article  CAS  PubMed  Google Scholar 

  4. De Greef, T.F.A., Smulders, M.M.J., Wolffs, M., Schenning, A.P.H.J., Sijbesma, R.P., Meijer, E.W.: Supramolecular Polymerization. Chem. Rev. 109, 5687–5754 (2009)

    PubMed  Google Scholar 

  5. Luo, Q., Hou, C., Bai, Y., Wang, R., Liu, J.: Protein assembly: versatile approaches to construct highly ordered nanostructures. Chem. Rev. 116, 13571–13632 (2016)

    Article  CAS  PubMed  Google Scholar 

  6. Zhu, J., Avakyan, N., Kakkis, A., Hoffnagle, A.M., Han, K., Li, Y., Zhang, Z., Choi, T.S., Na, Y., Yu, C.-J., Tezcan, F.A.: Protein Assembly by Design. Chem. Rev. 121, 13701–13796 (2021)

    CAS  PubMed  Google Scholar 

  7. Matsuura, K.: Rational design of self-assembled proteins and peptides for nano- and micro-sized architectures. RSC Adv. 4, 2942–2953 (2014)

    Article  Google Scholar 

  8. Oohora, K., Onoda, A., Hayashi, T.: Supramolecular assembling systems formed by heme–heme pocket interactions in hemoproteins. Chem. Commun. 48, 11714–11726 (2012)

    Article  CAS  Google Scholar 

  9. Hirota, S., Mashima, T., Kobayashi, N.: Use of 3D domain swapping in constructing supramolecular metalloproteins. Chem. Commun. 57, 12074–12086 (2021)

    Article  Google Scholar 

  10. Lai, Y.-T., Hura, G.L., Dyer, K.N., Tang, H.Y.H., Tainer, J.A., Yeates, T.O.: Designing and defining dynamic protein cage nanoassemblies in solution. Sci. Adv. 2, e1501855 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kobayashi, N., Arai, R.: Design and construction of self-assembling supramolecular protein complexes using artificial and fusion proteins as nanoscale building blocks. Curr. Opin. Biotechnol. 46, 57–65 (2017)

    Article  CAS  PubMed  Google Scholar 

  12. Bastings, M.M.C., de Greef, T.F.A., van Dongen, J.L.J., Merkx, M., Meijer, E.W.: Chem. Sci. 1, 79–88 (2010)

    Article  CAS  Google Scholar 

  13. Gonen, S., DiMaio, F., Gonen, T., Baker, D.: Design of ordered two-dimensional arrays mediated by noncovalent protein-protein interfaces. Science. 348, 1365–1368 (2015)

    Article  CAS  PubMed  Google Scholar 

  14. Sinclair, J.C., Davies, K.M., Vénien-Bryan, C., Noble, M.E.M.: Generation of protein lattices by fusing proteins with matching rotational symmetry. Nat. Nanotechnol. 6, 558–562 (2011)

    Article  CAS  PubMed  Google Scholar 

  15. Wicky, B.I.M., Milles, L.F., Courbet, A., Ragotte, R.J., Dauparas, J., Kinfu, E., Tipps, S., Kibler, R.D., Baek, M., DiMaio, F., Li, X., Carter, L., Kang, A., Nguyen, H., Bera, A.K., Baker, D.: Hallucinating symmetric protein assemblies. Science. 378, 6615, 56–61 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Subramanian, R.H., Zhu, J., Bailey, J.B., Chiong, J.A., Li, Y., Golub, E., Tezcan, F.A.: Design of metal-mediated protein assemblies via hydroxamic acid functionalities. Nat. Protoc. 16, 3264–3297 (2021)

    Article  CAS  PubMed  Google Scholar 

  17. Adachi, R., Suzuki, S., Mitsuda, T., Morita, Y., Komatsu, T.: Supramolecular linear coordination polymers of human serum albumin and haemoglobin. Chem. Commun. 56, 15585–15588 (2020)

    Article  CAS  Google Scholar 

  18. Malay, A.D., Miyazaki, N., Biela, A., Chakraborti, S., Majst-erkiewicz, K., Stupka, I., Kaplan, C.S., Kowalczyk, A., Piette, B.M.A.G., Hochberg, G.K.A., Wu, D., Wrobel, T.P., Fineberg, A., Kushwah, M.S., Kelemen, M., Vavpetič, P., Pelicon, P., Ku-kura, P., Benesch, J.L.P., Iwasaki, K., Heddle, J.G.: An ultra-stable gold-coordinated protein cage displaying reversible assembly. Nature. 569, 438–442 (2019)

    Article  CAS  PubMed  Google Scholar 

  19. Fegan, A., White, B., Carlson, J.C.T., Wagner, C.R.: Chemically controlled protein assembly: techniques and applications. Chem. Rev. 110, 3315–3336 (2010)

    Article  CAS  PubMed  Google Scholar 

  20. Mews, E.A., Beckmann, P., Patchava, M., Wang, Y., Largaespada, D.A., Wagner, C.R.: Multivalent, bispecific αB7-H3-αCD3 chemically self-assembled nanorings direct potent T cell responses against medulloblastoma. ACS Nano 16, 12185–12201 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Oohora, K., Hayashi, T.: Hemoprotein-based supramolecular assembling systems. Curr. Opin. Chem. Biol. 19, 154–161 (2014)

    Article  CAS  PubMed  Google Scholar 

  22. Dang, D.T., Schill, J., Brunsveld, L.: Cucurbit[8]uril-mediated protein homotetramerization. Chem. Sci. 3, 2679–2684 (2012)

    Article  CAS  Google Scholar 

  23. Nguyen, H.N., Dang, D.T., van Dongen, J.L.J., Brunsveld, L.: Protein dimerization induced by supramolecular interactions with cucurbit[8]uril. Angew Chem. Int. Ed 49, 895–898 (2010)

    Article  CAS  Google Scholar 

  24. Hou, C., Li, J., Zhao, L., Zhang, W., Luo, Q., Dong, Z., Xu, J., Liu, J.: Construction of protein nanowires through Cucurbit[8]uril-based highly specific host–guest interactions: an approach to the assembly of functional proteins. Angew Chem. Int. Ed 52, 5590–5593 (2013)

    Article  CAS  Google Scholar 

  25. Wang, R., Qiao, S., Zhao, L., Hou, C., Li, X., Liu, Y., Luo, Q., Xu, J., Li, H., Liu, J.: Dynamic protein self-assembly driven by host–guest chemistry and the folding–unfolding feature of a mutually exclusive protein. Chem. Commun. 53, 10532–10535 (2017)

    Article  CAS  Google Scholar 

  26. Song, W.J., Tezcan, F.A.: A designed supramolecular protein assembly with in vivo enzymatic activity. Science. 346, 1525–1528 (2014)

    Article  CAS  PubMed  Google Scholar 

  27. Gao, X., Yang, S., Zhao, C., Ren, Y., Wei, D.: Artificial multienzyme supramolecular device: highly ordered self-assembly of oligomeric enzymes in Vitro and in vivo. Angew Chem. Int. Ed 53, 14027–14030 (2014)

    Article  CAS  Google Scholar 

  28. Peschke, T., Bitterwolf, P., Gallus, S., Hu, Y., Oelschlaeger, C., Willenbacher, N., Rabe, K.S., Niemeyer, C.M.: Self-assembling all-enzyme hydrogels for Flow Biocatalysis. Angew Chem. Int. Ed. 57, 17028–17032 (2018)

    Article  CAS  Google Scholar 

  29. Li, Q., So, C.R., Fegan, A., Cody, V., Sarikaya, M., Vallera, D.A., Wagner, C.R.: Chemically self-assembled antibody nanorings (CSANs): design and characterization of an Anti-CD3 IgM biomimetic. J. Am. Chem. Soc 132, 17247–17157 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Biswas, S., Kinbara, K., Niwa, T., Taguchi, H., Ishii, N., Watanabe, S., Miyata, K., Kataoka, K., Aida, T.: Biomolecular robotics for chemomechanically driven guest delivery fuelled by intracellular ATP. Nat. Chem. 5, 613–620 (2013)

    Article  CAS  PubMed  Google Scholar 

  31. Li, X., Qiao, S., Zhao, L., Liu, S., Li, F., Yang, F., Luo, Q., Hou, C., Xu, J., Liu, J.: Template-free construction of highly ordered monolayered fluorescent protein nanosheets: a bioinspired artificial light-harvesting system. ACS Nano 13, 1861–1869 (2019)

    CAS  PubMed  Google Scholar 

  32. Zhao, L., Zou, H., Zhang, H., Sun, H., Wang, T., Pan, T., Li, X., Bai, Y., Qiao, S., Luo, Q., Xu, J., Hou, C., Liu, J.: Enzyme-triggered defined protein nanoarrays: efficient light-harvesting Systems to mimic chloroplasts. ACS Nano. 11, 938–945 (2017)

    Article  CAS  PubMed  Google Scholar 

  33. Reedy, C.J., Gibney, B.R.: Heme protein assemblies. Chem. Rev 104, 617–650 (2004)

    Article  CAS  PubMed  Google Scholar 

  34. Oohora, K., Hayashi, T.: Myoglobins engineered with artificial cofactors serve as artificial metalloenzymes and models of natural enzymes. Dalton Trans. 50, 1940–1949 (2021)

    Article  CAS  PubMed  Google Scholar 

  35. Oohora, K., Onoda, A., Hayashi, T.: Hemoproteins reconstituted with artificial metal complexes as biohybrid catalysts. Acc. Chem. Res 52, 945–954 (2019)

    Article  CAS  PubMed  Google Scholar 

  36. Churchfield, L.A., Tezcan, F.A.: Design and construction of functional supramolecular metalloprotein assemblies. Acc. Chem. Res 52, 345–355 (2019)

    Article  CAS  PubMed  Google Scholar 

  37. Salgado, E.N., Faraone-Mennella, J., Tezcan, F.A.: Controlling protein-protein interactions by metal coordination chemistry: assembly of a 16-Helix-bundle protein. J. Am. Chem. Soc 129, 13374–13375 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Salgado, N., Lewis, R.A., Faraone-Mennella, J., Tezcan, F.A.: Metal-mediated self-assembly of protein superstructures: influence of secondary interactions on protein oligomerization and aggregation. J. Am. Chem. Soc. 130, 6082–6084 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Salgado, E.N., Lewis, R.A., Mossin, S., Rheingold, A.L., Tezcan, F.A.: Control of protein oligomerization symmetry by Metal Coordination: C2 and C3 symmetrical assemblies through CuII and NiII coordination. Inorg. Chem. 48, 2726–2728 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Salgado, E.N., Ambroggio, X.I., Brodin, J.D., Lewis, R.A., Kuhlman, B., Tezcan, F.A.: Metal templated design of protein interfaces. Proc. Natl. Acad. Sci. USA 107, 1827–1832 (2010)

    Article  CAS  PubMed  Google Scholar 

  41. Ni, T.W., Tezcan, F.A.: Structural characterization of a microperoxidase inside a metal-directed protein cage. Angew Chem. Int. Ed 49, 7014–7018 (2010)

    Article  CAS  Google Scholar 

  42. Brodin, J.D., Ambroggio, X., Tang, C., Parent, K., Baker, T., Tezcan, F.A.: Metal-directed, chemically tunable assembly of one-, two- and three-dimensional crystalline protein arrays. Nat. Chem. 4, 375–382 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Brodin, J.D., Smith, S.J., Carr, J.R., Tezcan, F.A.: Designed, helical protein nanotubes with variable diameters from a single building block. J. Am. Chem. Soc. 137, 10468–10471 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Subramanian, R., Suzuki, Y., Tallorin, L., Sahu, S., Thompson, M.P., Gianneschi, N.C., Burkart, M.D., Tezcan, F.A.: Enzyme-directed functionalization of designed two-dimensional protein lattices. Biochemistry 60, 1050–1062 (2021)

    Article  CAS  PubMed  Google Scholar 

  45. Radford, R.J., Tezcan, F.A.: A superprotein triangle driven by nickel(II) coordination: exploiting non-natural metal ligands in protein self-assembly. J. Am. Chem. Soc 131, 9136–9137 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Radford, R.J., Nguyen, P.C., Ditri, T.B., Figureroa, J.S., Tezcan, F.A.: Controlled protein dimerization through hybrid coordination motifs. Inorg. Chem. 49, 4362–4369 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Golub, E., Subramanian, R.H., Esselborn, J., Alberstein, R.G., Bailey, J.B., Chiong, J.A., Yan, X., Booth, T., Baker, T.S., Tezcan, F.A.: Constructing protein polyhedra via orthogonal chemical interactions. Nature 578, 172–176 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Brodin, J.D., Carr, J.R., Sontz, P.A., Tezcan, F.A.: Exceptionally stable redox-active supramolecular protein assemblies with emergent properties. Proc. Natl. Acad. Sci. USA 111, 2897–2902 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Salgado, E.N., Brodin, J.D., To, M.M., Tezcan, F.A.: Templated construction of a Zn-Selective protein dimerization motif. Inorg. Chem 50, 6323–6329 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Medina-Morales, A., Perez, A., Brodin, J.D., Tezcan, F.A.: In vitro and cellular self-assembly of a Zn-Binding protein cryptand via templated disulfide bonds. J. Am. Chem. Soc 135, 12013–12022 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Churchfield, L.A., Medina-Morales, A., Brodin, J.D., Perez, A., Tezcan, F.A.: De novo design of an allosteric metalloprotein assembly with strained disulfide bonds. J. Am. Chem. Soc 138, 13163–13166 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rittle, J., Field, M.J., Green, M.T., Tezcan, F.A.: An efficient, step-economical strategy for the design of functional metalloproteins. Nat. Chem. 11, 434–441 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kakkis, A., Gagnon, D., Esselborn, J., Britt, R.D., Tezcan, F.A.: Metal-templated design of chemically switchable protein assemblies with high-affinity coordination sites. Angew Chem. Int. Ed 59, 21940–21944 (2020)

    Article  CAS  Google Scholar 

  54. Choi, T.S., Tezcan, F.A.: Overcoming universal restrictions on metal selectivity by protein design. Nature. 603, 522–527 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kakkis, A., Golub, E., Choi, T.S., Tezcan, F.A.: Redox- and metal-directed structural diversification in designed metalloprotein assemblies. Chem. Commun. 58, 6958–6961 (2022)

    Article  CAS  Google Scholar 

  56. Choi, T.S., Tezcan, F.A.: Design of a flexible, Zn-Selective protein Scaffold that displays anti-irving – Williams Behavior. J. Am. Chem. Soc. 144, 18090–18100 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Song, W.J., Yu, J., Tezcan, F.A.: Importance of scaffold flexibility/rigidity in the design and directed evolution of artificial metallo-β-lactamases. J. Am. Chem. Soc. 139, 16772–16779 (2017)

    Article  CAS  PubMed  Google Scholar 

  58. Suzuki, Y., Cardone, G., Restrepo, D., Zavattieri, P.D., Baker, T.S., Tezcan, F.A.: Self-assembly of coherently dynamic, auxetic, two-dimensional protein crystals. Nature. 533, 369–373 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang, S., Alberstein, R.G., De Yoreo, J.J., Tezcan, F.A.: Assembly of a patchy protein into variable 2D lattices via tunable, multiscale interactions. Nat. Commun. 11, 3770 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  60. Hirota, S.: Oligomerization of cytochrome c, myoglobin, and related heme proteins by 3D domain swapping. J. Inorg. Biochem. 194, 170–179 (2019)

    Article  CAS  PubMed  Google Scholar 

  61. Hirota, S., Hattori, Y., Nagao, S., Taketa, M., Komori, H., Kamikubo, H., Wang, Z., Takahashi, I., Negi, S., Sugiura, Y., Kataoka, M., Higuchi, Y.: Cytochrome c polymerization by successive domain swapping at the c-terminal helix. Proc. Natl. Acad. Sci. USA 107, 12854–12859 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang, Z., Matsuo, T., Nagao, S., Hirota, S.: Peroxidase activity enhancement of horse cytochrome c by dimerization. Org. Biomol. Chem. 9, 4766–4769 (2011)

    Article  CAS  PubMed  Google Scholar 

  63. Hirota, S., Ueda, M., Hayashi, Y., Nagao, S., Kamikubo, H., Kataoka, M.: Maintenance of the secondary structure of horse cytochrome c during the Conversion process of monomers to oligomers by addition of ethanol. J. Biochem. 152, 521–529 (2012)

    Article  CAS  PubMed  Google Scholar 

  64. Hayashi, Y., Nagao, S., Osuka, H., Komori, H., Higuchi, Y., Hirota, S.: Domain swapping of the Heme and N-terminal α-helix in Hydrogenobacter thermophilus Cytochrome c552 Dimer. Biochemistry. 51, 8608–8616 (2012)

    Article  CAS  PubMed  Google Scholar 

  65. Nagao, S., Osuka, H., Yamada, T., Uni, T., Shomura, Y., Higuchi, Y., Hirota, S.: Structural and oxygen binding Properties of Dimeric Horse Myoglobin. Dalton Trans. 41, 11378–11385 (2012)

    Article  CAS  PubMed  Google Scholar 

  66. Parui, P.P., Deshpande, M.S., Nagao, S., Kamikubo, H., Komori, H., Higuchi, Y., Kataoka, M., Hirota, S.: Formation of oligomeric cytochrome c during folding by Intermolecular Hydrophobic Interaction between N- and C-Terminal α-Helices. Biochemistry. 52, 8732–8744 (2013)

    Article  CAS  PubMed  Google Scholar 

  67. Deshpande, M.S., Parui, P.P., Kamikubo, H., Yamanaka, M., Nagao, S., Komori, H., Kataoka, M., Higuchi, Y., Hirota, S.: Formation of domain-swapped oligomer of cytochrome c from its molten globule state Oligomer. Biochemistry. 53, 4696–4703 (2014)

    Article  CAS  PubMed  Google Scholar 

  68. Ren, C., Nagao, S., Yamanaka, M., Komori, H., Shomura, Y., Higuchi, Y., Hirota, S.: Oligomerization enhancement and two domain swapping mode detection for thermostable cytochrome c552 via the elongation of the major hinge loop. Mol. Biosyst 11, 3218–3221 (2015)

    Article  CAS  PubMed  Google Scholar 

  69. Miyamoto, T., Kuribayashi, M., Nagao, S., Shomura, Y., Higuchi, Y., Hirota, S.: Domain-swapped cytochrome cb562 dimer and its nanocage encapsulating a Zn–SO4 cluster in the internal cavity. Chem. Sci 6, 7336–7342 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Nagao, S., Ishikawa, H., Yamada, T., Mizutani, Y., Hirota, S.: Carbon monoxide binding properties of domain-swapped dimeric myoglobin. J. Biol. Inorg. Chem 20, 523–530 (2015)

    Article  CAS  PubMed  Google Scholar 

  71. Lin, Y.-W., Nagao, S., Zhang, M., Shomura, Y., Higuchi, Y., Hirota, S.: Rational design of Heterodimeric protein using domain swapping for myoglobin. Angew Chem. Int. Ed. 54, 511–515 (2015)

    CAS  Google Scholar 

  72. Zhang, M., Nakanishi, T., Yamanaka, M., Nagao, S., Yanagisawa, S., Shomura, Y., Shibata, N., Ogura, T., Higuchi, Y., Hirota, S.: Rational design of domain-swapping-based c-Type cytochrome heterodimers by using chimeric proteins. ChemBioChem 18, 1712–1715 (2017)

    Article  CAS  PubMed  Google Scholar 

  73. Nagao, S., Idomoto, A., Shibata, N., Higuchi, Y., Hirota, S.: Rational design of metal-binding Sites in Domain-Swapped Myoglobin Dimers. J. Inorg. Biochem. 217, 111374 (2021)

    Article  CAS  PubMed  Google Scholar 

  74. Yamanaka, M., Hoshizumi, M., Nagao, S., Nakayama, R., Shibata, N., Higuchi, Y., Hirota, S.: Formation and carbon monoxide-dependent dissociation of Allochromatium vinosum cytochrome c’ oligomers using domain-swapped dimers. Protein Sci 26, 464–474 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yamanaka, M., Nakayama, R., Fujii, S., Wakai, S., Sambongi, Y., Hirota, S.: Conferment of CO-controlled dimer-monomer transition property to thermostable cytochrome c’ by mutation in the subunit-subunit interface. Bull. Chem. Soc. Jpn. 92, 702_709 (2019)

    Article  Google Scholar 

  76. Kitagishi, H., Oohora, K., Yamaguchi, H., Sato, H., Matsuo, T., Harada, A., Hayashi, T.: Supramolecular hemoprotein linear assembly by successive interprotein Heme – Heme pocket interactions. J. Am. Chem. Soc 129, 10326–10327 (2007)

    Article  CAS  PubMed  Google Scholar 

  77. Oohora, K., Onoda, A., Kitagishi, H., Yamaguchi, H., Harada, A., Hayashi, T.: A chemically-controlled supramolecular protein polymer formed by a myoglobin-based self-assembly system. Chem. Sci. 2, 1033–1038 (2011)

    Article  CAS  Google Scholar 

  78. Hargrove, M.S., Wilkinson, A.J., Olson, J.S.: Structural factors governing hemin dissociation from metmyoglobin. Biochemistry 35, 11300–11309 (1996)

    Article  CAS  PubMed  Google Scholar 

  79. Oohora, K., Onuma, Y., Tanaka, Y., Onoda, A., Hayashi, T.: A supramolecular assembly based on an engineered hemoprotein exhibiting a thermal stimulus-driven conversion to a new distinct supramolecular structure. Chem. Commun. 53, 6879–6882 (2017)

    Article  CAS  Google Scholar 

  80. Oohora, K., Fujimaki, N., Kajihara, R., Watanabe, H., Uchihashi, T., Hayashi, T.: Supramolecular hemoprotein assembly with a periodic structure showing heme–heme exciton coupling. J. Am. Chem. Soc 140, 10145–10148 (2018)

    Article  CAS  PubMed  Google Scholar 

  81. Kajihara, R., Oohora, K., Hayashi, T.: Photoinduced electron transfer within supramolecular hemoprotein co-assemblies and heterodimers containing Fe and Zn porphyrins. J. Inorg. Biochem. 193, 42–51 (2019)

    Article  CAS  PubMed  Google Scholar 

  82. Oohora, K., Kajihara, R., Jiromaru, M., Kitagishi, H., Hayashi, T.: Arginine residues provide a multivalent Effect for Cellular Uptake of a Hemoprotein Assembly. Chem. Lett. 48, 295–298 (2019)

    Article  CAS  Google Scholar 

  83. Oohora, K., Kajihara, R., Fujimaki, N., Uchihashi, T., Hayashi, T.: A ring-shaped hemoprotein trimer thermodynamically controlled by the supramolecular heme–heme pocket interaction. Chem. Commun. 55, 1544–1547 (2019)

    Article  CAS  Google Scholar 

  84. Jeoung, J.-H., Pippig, D.A., Martins, B.M., Wagener, N., Dobbek, H.: HTHP: a Novel Class of Hexameric, Tyrosine-coordinated Heme Proteins. J. Mol. Biol. 368, 1122–1131 (2007)

    Article  CAS  PubMed  Google Scholar 

  85. Mashima, T., Oohora, K., Hayashi, T.: Substitution of an amino acid residue axially coordinating to the heme molecule in hexameric tyrosine-coordinated hemoprotein to enhance peroxidase activity. J. Porphyrins Phthalocyanines. 21, 824–831 (2017)

    Article  CAS  Google Scholar 

  86. Oohora, K., Mashima, T., Ohkubo, K., Fukuzumi, S., Hayashi, T.: Energy migration within hexameric hemoprotein reconstituted with zn porphyrinoid molecules. Chem. Commun. 51, 11138–11140 (2015)

    Article  CAS  Google Scholar 

  87. Mashima, T., Oohora, K., Hayashi, T.: Successive energy transfer within multiple photosensitizers assembled in a hexameric Hemoprotein Scaffold. Phys. Chem. Chem. Phys. 20, 3200–3209 (2018)

    Article  CAS  PubMed  Google Scholar 

  88. Soon, J.W., Oohora, K., Hirayama, S., Hayashi, T.: A supramolecular assembly of hemoproteins formed in a star-shaped structure via Heme–Heme pocket interactions. Int. J. Mol. Sci 22, 1012 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Oohora, K., Hirayama, S., Mashima, T., Hayashi, T.: Supramolecular dimerization of a hexameric hemoprotein via multiple pyrene–pyrene interactions. J. Porphyrins Phthalocyanines. 24, 259–267 (2020)

    Article  CAS  Google Scholar 

  90. Oohora, K., Hirayama, S., Uchihashi, T., Hayashi, T.: Construction of a hexameric hemoprotein sheet and direct observation of dynamic process of its formation. Chem. Lett 49, 186–190 (2020)

    Article  CAS  Google Scholar 

  91. Hirayama, S., Oohora, K., Uchihashi, T., Hayashi, T.: Thermoresponsive micellar assembly constructed from a hexameric hemoprotein modified with poly(N-isopropylacrylamide) toward an artificial light-harvesting system. J. Am. Chem. Soc 142, 1822–1831 (2020)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author appreciates the organizing committee of Host-Guest and Supramolecular Chemistry Society, Japan for giving him the SHGCS Japan Award of Excellence 2022 and the opportunity to write this review. The author also deeply thanks Prof. Takashi Hayashi of Osaka University for his positive and constructive suggestions. The coworkers who contributed to the results presented in this review are gratefully acknowledged as well as our collaborators. This work was funded by Grants-in-Aid for Scientific Research provided by JSPS KAKENHI Grant Numbers JP20H02755, JP20KK0315, and JP22H05364 and JST PPRESTO JPMJPR22A3. This is a paper selected for the "SHGSC Japan Award of Excellence 2022”.

Author information

Authors and Affiliations

Authors

Contributions

KO wrote the main manuscript text and prepared all of figures.

Corresponding author

Correspondence to Koji Oohora.

Ethics declarations

Conflict of interest

There are no conflict to declare

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oohora, K. Supramolecular assembling systems of hemoproteins using chemical modifications. J Incl Phenom Macrocycl Chem 103, 97–107 (2023). https://doi.org/10.1007/s10847-023-01181-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-023-01181-6

Keywords

Navigation