Skip to main content

Preparation of Cage-Like Micellar Assemblies of Engineered Hemoproteins

  • Protocol
  • First Online:
Protein Cages

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2671))

  • 455 Accesses

Abstract

Natural protein assemblies have encouraged scientists to create large supramolecular systems consisting of various protein motifs. In the case of hemoproteins containing heme as a cofactor, several approaches have been reported to form artificial assemblies with various structures such as fibers, sheets, networks, and cages. This chapter describes the design, preparation, and characterization of cage-like micellar assemblies for chemically modified hemoproteins including hydrophilic protein units attached to hydrophobic molecules. Detailed procedures are described for constructing specific systems using cytochrome b562 and hexameric tyrosine-coordinated heme protein as hemoprotein units with heme-azobenzene conjugate and poly-N-isopropylacrylamide as attached molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Luo Q, Hou C, Bai Y, Wang R, Liu J (2016) Protein assembly: versatile approaches to construct highly ordered nanostructures. Chem Rev 116:13571–13632

    Article  CAS  PubMed  Google Scholar 

  2. Kobayashi N, Arai R (2017) Design and construction of self-assembling supramolecular protein complexes using artificial and fusion proteins as nanoscale building blocks. Curr Opin Biotech 46:57–65

    Article  CAS  PubMed  Google Scholar 

  3. van Dun S, Ottmann C, Milroy LG, Brunsveld L (2017) Supramolecular chemistry targeting proteins. J Am Chem Soc 139:13960–13968

    Article  PubMed Central  PubMed  Google Scholar 

  4. Fegan A, White B, Carlson JCT, Wagner CR (2010) Chemically controlled protein assembly: techniques and applications. Chem Rev 110:3315–3336

    Article  CAS  PubMed  Google Scholar 

  5. Lai YT, Cascio D, Yeates TO (2012) Structure of a 16-nm cage designed by using protein oligomers. Science 336:1129

    Article  CAS  PubMed  Google Scholar 

  6. Hsia Y, Bale JB, Gonen S, Shi D, Sheffler W, Fong KK, Nattermann U, Xu C, Huang P, Ravichandran R, Yi S, Davis TN, Gonen T, King NP, Baker D (2016) Design of a hyperstable 60-subunit protein icosahedron. Nature 535:136–139

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Burazerovic S, Gradinaru J, Pierron J, Ward TR (2007) Hierarchical self-assembly of one-dimensional streptavidin bundles as a collagen mimetic for the biomineralization of calcite. Angew Chem Int Ed 46:5510–5514

    Article  CAS  Google Scholar 

  8. Nguyen TK, Negishi H, Abe S, Ueno T (2019) Construction of supramolecular nanotubes from protein crystals. Chem Sci 10:1046–1051

    Article  CAS  PubMed  Google Scholar 

  9. Malay AD, Miyazaki N, Biela A, Chakraborti S, Majsterkiewicz K, Stupka I, Kaplan CS, Kowalczyk A, Piette BMAG, Hochberg GKA, Wu D, Wrobel TP, Fineberg A, Kushwah MS, Kelemen M, Vavpetič P, Pelicon P, Kukura P, Benesch JLP, Iwasaki K, Heddle JG (2019) An ultra-stable gold-coordinated protein cage displaying reversible assembly. Nature 569:438–442

    Article  CAS  PubMed  Google Scholar 

  10. Simon AJ, Zhou Y, Ramasubramani V, Glaser J, Pothukuchy A, Gollihar J, Gerberich JC, Leggere JC, Morrow BR, Jung C, Glotzer SC, Taylor DW, Ellington AD (2019) Supercharging enables organized assembly of synthetic biomolecules. Nat Chem 11:204–212

    Article  CAS  PubMed  Google Scholar 

  11. Oohora K, Hayashi T (2014) Hemoprotein-based supramolecular assembling systems. Curr Opin Chem Biol 19:154–161

    Article  CAS  PubMed  Google Scholar 

  12. Hirota S (2019) Oligomerization of cytochrome c, myoglobin, and related heme proteins by 3D domain swapping. J Inorg Biochem 194:170–179

    Article  CAS  PubMed  Google Scholar 

  13. Hirota S, Hattori Y, Nagao S, Taketa M, Komori H, Kamikubo H, Wang Z, Takahashi I, Negi S, Sugiura Y, Kataoka M, Higuchi Y (2010) Cytochrome c polymerization by successive domain swapping at the C-terminal helix. Proc Natl Acad Sci 107:12854–12859

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Zhang M, Nakanishi T, Yamanaka M, Nagao S, Yanagisawa S, Shomura Y, Shibata N, Ogura T, Higuchi Y, Hirota S (2017) Rational design of domain-swapping-based c-type cytochrome heterodimers by using chimeric proteins. Chembiochem 18:1712–1715

    Article  CAS  PubMed  Google Scholar 

  15. Hayashi Y, Yamanaka M, Nagao S, Komori H, Higuchi Y, Hirota S (2016) Domain swapping oligomerization of thermostable c-type cytochrome in E. coli cells. Sci Rep 6:19334

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Miyamoto T, Kuribayashi M, Nagao S, Shomura Y, Higuchi Y, Hirota S (2015) Domain-swapped cytochrome cb562 dimer and its nanocage encapsulating a Zn-SO4 cluster in the internal cavity. Chem Sci 6:7336–7342

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Churchfield LA, Tezcan FA (2019) Design and construction of functional supramolecular metalloprotein assemblies. Acc Chem Res 52:345–355

    Article  CAS  PubMed  Google Scholar 

  18. Radford RJ, Tezcan FA (2009) A superprotein triangle driven by nickel(II) coordination: exploiting non-natural metal ligands in protein self-assembly. J Am Chem Soc 131:9136–9137

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Ni TW, Tezcan FA (2010) Structural characterization of a microperoxidase inside a metal-directed protein cage. Angew Chem Int Ed 49:7014–7018

    Article  CAS  Google Scholar 

  20. Song WJ, Tezcan FA (2014) A designed supramolecular protein assembly with in vivo enzymatic activity. Science 346:1525–1528

    Article  CAS  PubMed  Google Scholar 

  21. Brodin JD, Smith SJ, Carr JR, Tezcan FA (2015) Designed, helical protein nanotubes with variable diameters from a single building block. J Am Chem Soc 137:10468–10471

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Golub E, Subramanian RH, Esselborn J, Alberstein RG, Bailey JB, Chiong JA, Yan X, Booth T, Baker TS, Tezcan FA (2020) Constructing protein polyhedra via orthogonal chemical interactions. Nature 578:172–176

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Oohora K, Onoda A, Hayashi T (2012) Supramolecular assembling systems formed by heme–heme pocket interactions in hemoproteins. Chem Commun 48:11714–11726

    Article  CAS  Google Scholar 

  24. Kitagishi H, Oohora K, Yamaguchi H, Sato H, Matsuo T, Harada A, Hayashi T (2007) Supramolecular hemoprotein linear assembly by successive interprotein heme−heme pocket interactions. J Am Chem Soc 129:10326–10327

    Article  CAS  PubMed  Google Scholar 

  25. Oohora K, Fujimaki N, Kajihara R, Watanabe H, Uchihashi T, Hayashi T (2018) Supramolecular hemoprotein assembly with a periodic structure showing heme–heme exciton coupling. J Am Chem Soc 140:10145–10148

    Article  CAS  PubMed  Google Scholar 

  26. Oohora K, Kajihara R, Jiromaru M, Kitagishi H, Hayashi T (2019) Arginine residues provide a multivalent effect for cellular uptake of a hemoprotein assembly. Chem Lett 48:295–298

    Article  CAS  Google Scholar 

  27. Soon JW, Oohora K, Hirayama S, Hayashi T (2021) A supramolecular assembly of hemoproteins formed in a star-shaped structure via heme–heme pocket interactions. Int J Mol Sci 22:1012

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Kitagishi H, Kakikura Y, Yamaguchi H, Oohora K, Harada A, Hayashi T (2009) Self-assembly of one- and two-dimensional hemoprotein systems by polymerization through heme–heme pocket interactions. Angew Chem Int Ed 48:1271–1274

    Article  CAS  Google Scholar 

  29. Oohora K, Onoda A, Kitagishi H, Yamaguchi H, Harada A, Hayashi T (2011) A chemically-controlled supramolecular proteinpolymer formed by a myoglobin-based self-assembly system. Chem Sci 2:1033–1038

    Article  CAS  Google Scholar 

  30. Oohora K, Onuma Y, Tanaka Y, Onoda A, Hayashi T (2017) A supramolecular assembly based on an engineered hemoprotein exhibiting a thermal stimulus-driven conversion to a new distinct supramolecular structure. Chem Commun 53:6879–6882

    Article  CAS  Google Scholar 

  31. Jeoung JH, Pippig DA, Martins BM, Wagener N, Dobbek H (2007) HTHP: a novel class of hexameric, tyrosine-coordinated heme proteins. J Mol Biol 368:1122–1131

    Article  CAS  PubMed  Google Scholar 

  32. Oohora K, Hirayama S, Mashima T, Hayashi T (2020) Supramolecular dimerization of a hexameric hemoprotein via multiple pyrene-pyrene interactions. J Porphyrins Phthalocyanines 24:259–267

    Article  CAS  Google Scholar 

  33. Oohora K, Hirayama S, Uchihashi T, Hayashi T (2020) Construction of a hexameric hemoprotein sheet and direct observation of dynamic process of its formation. Chem Lett 49:186–190

    Article  CAS  Google Scholar 

  34. Hirayama S, Oohora K, Uchihashi T, Hayashi T (2020) Thermoresponsive micellar assembly constructed from a hexameric hemoprotein modified with poly(N-isopropylacrylamide) toward an artificial light-harvesting system. J Am Chem Soc 142:1822–1831

    Article  CAS  PubMed  Google Scholar 

  35. Wan X, Liu S (2010) Fabrication of a thermoresponsive biohybrid double hydrophilic block copolymer by a cofactor reconstitution approach. Macromol Rapid Commun 31:2070–2076

    Article  CAS  PubMed  Google Scholar 

  36. Reynhout IC, Cornelissen JJLM, Nolte RJM (2007) Self-assembled architectures from biohybrid triblock copolymers. J Am Chem Soc 129:2327–2332

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge supports from JSPS KAKENHI JP15H05804, JP15K21707, JP20H00403, and JP20H02755.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Koji Oohora or Takashi Hayashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Oohora, K., Hayashi, T. (2023). Preparation of Cage-Like Micellar Assemblies of Engineered Hemoproteins. In: Ueno, T., Lim, S., Xia, K. (eds) Protein Cages. Methods in Molecular Biology, vol 2671. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3222-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3222-2_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3221-5

  • Online ISBN: 978-1-0716-3222-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics