Skip to main content
Log in

Retention of a plethora of essential oils and aromas in deep eutectic solvent:water:cyclodextrin mixtures

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Essential oils (EOs) and aromas have long been used in the perfume, cosmetic, pharmaceutical and food industries. Yet, aside their poor solubility and instability, their high volatility limits their application. Their encapsulation in cyclodextrins (CDs) or their solvation in deep eutectic solvents (DESs) are two efficient strategies to resolve such problems. Thus, the present study aims to investigate the retention ability of the combination of DESs and CDs towards a wide variety of EOs and aromas. Thus, the capacity of formulations combining choline chloride:urea (ChCl:U) DES, CDs and water to retain and decrease the volatility of twenty EOs and twenty-one aromas was examined. Also, the formation constants (Kf) of CD/aroma inclusion complexes in this new non-conventional medium were determined. Results showed that ChCl:U DES:water 70:30 wt% mixed with 10 wt% CD had an efficient ability to retain all the studied EOs and aromas. Also, the addition of CDs in this mixture was shown to be advantageous in improving the efficiency of the formulation even if lower complexation ability towards the aromas was observed compared to water. Altogether, the obtained results will encourage the use of DES:water:CD mixtures for the incorporation of EOs and aromas in different preparations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Angane, M., Swift, S., Huang, K., Butts, C.A., Quek, S.Y.: Essential oils and their major components: an updated review on antimicrobial activities, mechanism of action and their potential application in the food industry. Foods 11, 464 (2022). https://doi.org/10.3390/foods11030464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Aziz, Z.A.A., Ahmad, A., Setapar, S.H.M., Karakucuk, A., Azim, M.M., Lokhat, D., Rafatullah, M., Ganash, M., Kamal, M.A., Ashraf, G.M.: Essential oils: extraction techniques, pharmaceutical and therapeutic potential-a review. CDM 19, 1100–1110 (2018). https://doi.org/10.2174/1389200219666180723144850

    Article  CAS  Google Scholar 

  3. Kfoury, M., Auezova, L., Greige-Gerges, H., Fourmentin, S.: Encapsulation in cyclodextrins to widen the applications of essential oils. Environ. Chem. Lett. 17, 129–143 (2019). https://doi.org/10.1007/s10311-018-0783-y

    Article  CAS  Google Scholar 

  4. Kfoury, M., Auezova, L., Greige-Gerges, H., Fourmentin, S.: Promising applications of cyclodextrins in food: improvement of essential oils retention, controlled release and antiradical activity. Carbohyd. Polym. 131, 264–272 (2015). https://doi.org/10.1016/j.carbpol.2015.06.014

    Article  CAS  Google Scholar 

  5. Xiao, Z., Zhang, Y., Niu, Y., Ke, Q., Kou, X.: Cyclodextrins as carriers for volatile aroma compounds: a review. Carbohyd. Polym. 269, 118292 (2021). https://doi.org/10.1016/j.carbpol.2021.118292

    Article  CAS  Google Scholar 

  6. Kfoury, M., Landy, D., Fourmentin, S.: Characterization of cyclodextrin volatile inclusion complexes: a review. Molecules 23, 1204 (2018). https://doi.org/10.3390/molecules23051204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Loftsson, T., Brewster, M.E.: Cyclodextrins as functional excipients: methods to enhance complexation efficiency. J. Pharm. Sci. 101, 3019–3032 (2012). https://doi.org/10.1002/jps.23077

    Article  CAS  PubMed  Google Scholar 

  8. Ciobanu, A., Landy, D., Fourmentin, S.: Complexation efficiency of cyclodextrins for volatile flavor compounds. Food Res. Int. 53, 110–114 (2013). https://doi.org/10.1016/j.foodres.2013.03.048

    Article  CAS  Google Scholar 

  9. Costa, P., Medronho, B., Gonçalves, S., Romano, A.: Cyclodextrins enhance the antioxidant activity of essential oils from three Lamiaceae species. Ind. Crops Prod. 70, 341–346 (2015). https://doi.org/10.1016/j.indcrop.2015.03.065

    Article  CAS  Google Scholar 

  10. Kfoury, M., Geagea, C., Ruellan, S., Greige-Gerges, H., Fourmentin, S.: Effect of cyclodextrin and cosolvent on the solubility and antioxidant activity of caffeic acid. Food Chem. 278, 163–169 (2019). https://doi.org/10.1016/j.foodchem.2018.11.055

    Article  CAS  PubMed  Google Scholar 

  11. Nakhle, L., Kfoury, M., Greige-Gerges, H., Fourmentin, S.: Effect of dimethylsulfoxide, ethanol, α-and β-cyclodextrins and their association on the solubility of natural bioactive compounds. J. Mol. Liq. 310, 113156 (2020). https://doi.org/10.1016/j.molliq.2020.113156

    Article  CAS  Google Scholar 

  12. Joshi, D.R., Adhikari, N.: An overview on common organic solvents and their toxicity. JPRI (2019). https://doi.org/10.9734/jpri/2019/v28i330203

    Article  Google Scholar 

  13. Abbott, A.P., Capper, G., Davies, D.L., Rasheed, R.K., Tambyrajah, V.: Tambyrajah V Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. 1, 70–71 (2003). https://doi.org/10.1039/b210714g

    Article  CAS  Google Scholar 

  14. Abbott, A.P., Boothby, D., Capper, G., Davies, D.L., Rasheed, R.K.: Ionic liquids in biotransformations and organocatalysis: solvents and beyond. J. Am. Chem. Soc. 126, 9142–9147 (2004). https://doi.org/10.1021/ja048266j

    Article  CAS  PubMed  Google Scholar 

  15. Martins, M.A.R., Pinho, S.P., Coutinho, J.A.P.: Insights into the nature of eutectic and deep eutectic mixtures. J. Sol. Chem. 48, 962–982 (2019). https://doi.org/10.1007/s10953-018-0793-1

    Article  CAS  Google Scholar 

  16. Nakhle, L., Kfoury, M., Mallard, I., Landy, D., Greige-Gerges, H.: Microextraction of bioactive compounds using deep eutectic solvents: A review. Environ. Chem. Lett. (2021). https://doi.org/10.1007/s10311-021-01255-2

    Article  Google Scholar 

  17. El-Achkar, T., Moura, L., Moufawad, T., Ruellan, S., Panda, S., Longuemart, S., Legrand, F.-X., Costa-Gomes, M., Landy, D., Greige-Gerges, H., Fourmentin, S.: New generation of supramolecular mixtures: Characterization and solubilization studies. Int. J. Pharmac. (2020). https://doi.org/10.1016/j.ijpharm.2020.119443

    Article  Google Scholar 

  18. Nakhle, L., Kfoury, M., Mallard, I., Greige-Gerges, H., Landy, D.: Solubilization of Eucalyptus citriodora essential oil and citronellal in deep eutectic solvents: water: cyclodextrins mixtures. J. Mol. Liq. 359, 119371 (2022). https://doi.org/10.1016/j.molliq.2022.119371

    Article  CAS  Google Scholar 

  19. Fourmentin, S., Ciobanu, A., Landy, D., Wenz, G.: Space filling of β-cyclodextrin and β-cyclodextrin derivatives by volatile hydrophobic guests. Beilstein J. Org. Chem. 9, 1185–1191 (2013). https://doi.org/10.3762/bjoc.9.133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Di Pietro, M.E., Colombo Dugoni, G., Ferro, M., Mannu, A., Castiglione, F., Costa Gomes, M., Fourmentin, S., Mele, A.: In competition for water: hydrated choline chloride: urea vs choline acetate: urea deep eutectic solvents. ACS Sustain. Chem. Eng. 7, 17397–17405 (2019). https://doi.org/10.1021/acssuschemeng.9b04526

    Article  CAS  Google Scholar 

  21. Moufawad, T., Moura, L., Ferreira, M., Bricout, H., Tilloy, S., Monflier, E., Costa Gomes, M., Landy, D., Fourmentin, S.: First evidence of cyclodextrin inclusion complexes in a deep eutectic solvent. ACS Sustainable Chemistry & Engineering 7, 6345–6351 (2019). https://doi.org/10.1021/acssuschemeng.9b00044

    Article  CAS  Google Scholar 

  22. Villarim, P., Genty, E., Zemmouri, J., Fourmentin, S.: Deep eutectic solvents and conventional solvents as VOC absorbents for biogas upgrading: a comparative study. Chem. Eng. J. 446, 136875 (2022). https://doi.org/10.1016/j.cej.2022.136875

    Article  CAS  Google Scholar 

  23. El Achkar, T., Moufawad, T., Ruellan, S., Landy, D., Greige-Gerges, H., Fourmentin, S.: Cyclodextrins: from solute to solvent. Chem. Commun. 56, 3385–3388 (2020). https://doi.org/10.1039/D0CC00460J

    Article  Google Scholar 

  24. Martins, M.A.R., Silva, L.P., Ferreira, O., Schröder, B., Coutinho, J.A.P., Pinho, S.P.: Terpenes solubility in water and their environmental distribution. J. Mol. Liq. 241, 996–1002 (2017). https://doi.org/10.1016/j.molliq.2017.06.099

    Article  CAS  Google Scholar 

  25. Weidenhamer, J.D., Macias, F.A., Fischer, N.H., Williamson, G.B.: Just how insoluble are monoterpenes. J. Chem. Ecol. 19, 1799–1807 (1993). https://doi.org/10.1007/BF00982309

    Article  CAS  PubMed  Google Scholar 

  26. Li, J., Perdue, E.M., Pavlostathis, S.G., Araujo, R.: Physicochemical properties of selected monoterpenes. Environ. Int. 24, 353–358 (1998). https://doi.org/10.1016/S0160-4120(98)00013-0

    Article  CAS  Google Scholar 

  27. Ajisaka, N., Hara, K., Mikuni, K., Hara, K., Hashimoto, H.: Effects of branched cyclodextrins on the solubility and stability of terpenes. Biosci. Biotechnol. Biochem. 64, 731–734 (2000). https://doi.org/10.1271/bbb.64.731

    Article  CAS  PubMed  Google Scholar 

  28. Kfoury, M., Landy, D., Ruellan, S., Auezova, L., Greige-Gerges, H., Fourmentin, S.: Determination of formation constants and structural characterization of cyclodextrin inclusion complexes with two phenolic isomers: carvacrol and thymol. Beilstein J. Org. Chem. 12, 29–42 (2016). https://doi.org/10.3762/bjoc.12.5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kfoury, M., Lounès-Hadj Sahraoui, A., Bourdon, N., Laruelle, F., Fontaine, J., Auezova, L., Greige-Gerges, H., Fourmentin, S.: Solubility, photostability and antifungal activity of phenylpropanoids encapsulated in cyclodextrins. Food Chem. 196, 518–525 (2016). https://doi.org/10.1016/j.foodchem.2015.09.078

    Article  CAS  PubMed  Google Scholar 

  30. Dugoni, G.C., Di Pietro, M.E., Ferro, M., Castiglione, F., Ruellan, S., Moufawad, T., Moura, L., Costa Gomes, M.F., Fourmentin, S., Mele, A.: Effect of water on deep eutectic solvent/β-cyclodextrin systems. ACS Sustain. Chem. Eng. 7, 7277–7285 (2019). https://doi.org/10.1021/acssuschemeng.9b00315

    Article  CAS  Google Scholar 

  31. Hammond, O.S., Simon, G., Gomes, M.C., Padua, A.A.H.: Tuning the solvation of indigo in aqueous deep eutectics. J. Chem. Phys. 154, 224502 (2021). https://doi.org/10.1063/5.0051069

    Article  CAS  PubMed  Google Scholar 

  32. López-Salas, N., Vicent-Luna, J.M., Imberti, S., Posada, E., Roldán, M.J., Anta, J.A., Balestra, S.R.G., Madero Castro, R.M., Calero, S., Jiménez-Riobóo, R.J., Gutiérrez, M.C., Ferrer, M.L., del Monte, F.: Looking at the “water-in-deep-eutectic-solvent” system: a dilution range for high performance eutectics. ACS Sustain. Chem. Eng. 7, 17565–17573 (2019). https://doi.org/10.1021/acssuschemeng.9b05096

    Article  CAS  Google Scholar 

  33. Hammond, O.S., Bowron, D.T., Edler, K.J.: The effect of water upon deep eutectic solvent nanostructure: an unusual transition from ionic mixture to aqueous solution. Angew. Chem. Int. Ed. 56, 9782–9785 (2017). https://doi.org/10.1002/anie.201702486

    Article  CAS  Google Scholar 

  34. Torri, G., Naggi, A., Crini, G.: Casu and Cyclodextrins. In: Crini, G., Fourmentin, S., Lichtfouse, E. (eds.) The History of Cyclodextrins; Environmental Chemistry for a Sustainable World, vol. 52, pp. 157–179. Springer International Publishing, Cham (2020)

    Google Scholar 

  35. McCune, J.A., Kunz, S., Olesińska, M., Scherman, O.A.: Desolution of CD and CB macrocycles. Chem. Eur. J. 23, 8601–8604 (2017). https://doi.org/10.1002/chem.201701275

    Article  CAS  PubMed  Google Scholar 

  36. Häkkinen, R., Alshammari, O., Timmermann, V., D’Agostino, C., Abbott, A.: Nanoscale clustering of alcoholic solutes in deep eutectic solvents studied by nuclear magnetic resonance and dynamic light scattering. ACS Sustain. Chem. Eng. 7, 15086–15092 (2019). https://doi.org/10.1021/acssuschemeng.9b03771

    Article  CAS  Google Scholar 

  37. Kfoury, M., Balan, R., Landy, D., Nistor, D., Fourmentin, S.: Investigation of the complexation of essential oil components with cyclodextrins. Supramol. Chem. 27, 620–628 (2015). https://doi.org/10.1080/10610278.2015.1051977

    Article  CAS  Google Scholar 

  38. Kfoury, M., Auezova, L., Ruellan, S., Greige-Gerges, H., Fourmentin, S.: Complexation of estragole as pure compound and as main component of basil and tarragon essential oils with cyclodextrins. Carbohyd. Polym. 118, 156–164 (2015). https://doi.org/10.1016/j.carbpol.2014.10.073

    Article  CAS  Google Scholar 

  39. Blach, P., Fourmentin, S., Landy, D., Cazier, F., Surpateanu, G.: Cyclodextrins: a new efficient absorbent to treat waste gas streams. Chemosphere 70, 374–380 (2008). https://doi.org/10.1016/j.chemosphere.2007.07.018

    Article  CAS  PubMed  Google Scholar 

  40. Decock, G., Landy, D., Surpateanu, G., Fourmentin, S.: Study of the retention of aroma components by cyclodextrins by static headspace gas chromatography. J. Incl. Phenom. Macrocycl. Chem. 62, 297–302 (2008). https://doi.org/10.1007/s10847-008-9471-z

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the National Council for Scientific Research of Lebanon (CNRS-L) and Université du Littoral Côte d'Opale (ULCO) for granting a doctoral fellowship to Lamia Nakhle. This work is a contribution to the CPER (Contrat de Plan Etat-Région) research project IRenE (Innovation et Recherche en Environnement) and is supported by the Ministère de l’Enseignement Supérieur (France), the region Hauts-de-France and the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Contributions

L.N. prepared all figures and tables. L.N and M.K. wrote the main manuscript. All authors reviewed the main manuscript.

Corresponding author

Correspondence to Miriana Kfoury.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1408 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakhle, L., Kfoury, M., Greige-Gerges, H. et al. Retention of a plethora of essential oils and aromas in deep eutectic solvent:water:cyclodextrin mixtures. J Incl Phenom Macrocycl Chem 103, 35–44 (2023). https://doi.org/10.1007/s10847-022-01174-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-022-01174-x

Keywords

Navigation