Skip to main content
Log in

CdO nanoparticles: robust inorganic additive for cadmium selective polymeric electrode based on N-phenylaza-15-crown-5

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

This study presents the development of a new and sensitive polyvinyl chloride electrode based on cadmium oxide (CdO) nanoparticles and N-phenylaza-15-crown-5 for the selective determination of cadmium cations. To this end, synthesized cadmium oxide nanoparticles were characterized through XRD, FT-IR and FESEM analysis. Then, CdO nanoparticles were applied as a modifier for the fabrication of the proposed electrode. The optimum membrane composition to construct the electrode comprised poly(vinyl chloride) (30%), nitrobenzene (61%), cadmium oxide nanoparticle (3%) and N-phenylaza-15-crown-5 (6%). The Nernstian slope of the electrode was obtained 27.3 ± 0.3 mV/decade in the 1.0 × 10–8 to 1.0 × 10–1 M concentration range, and the detection limit was obtained as 9.8 × 10–9 M. The response time of the electrode was short (5 s), while its reversibility and lifetime were high. It was revealed that the operation pH range of the electrode ranged between 2 and 9, and the electrode had a very good selectivity to cadmium cations among the other interfering ions. Further, the electrode was successfully used as a potentiometric sensor in complexometric titrations and the measurement of cadmium cations in the environmental waters.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Aware, D.V., Jadhav, S.S.: Synthesis, characterization and photocatalytic applicationsof Zn-doped TiO2 nanoparticles by sol-gel method. Appl. Nanosci. 6, 965–972 (2016)

    Article  CAS  Google Scholar 

  2. Groń, T., Karolewicz, M., Tomaszewicz, E., Guzik, M., Oboz, M., Sawicki, B., Duda, H., Kukuła, Z.: Dielectric and magnetic characteristics of Ca1−xMnxMoO4 (0≤x≤0.15) nanomaterials. J. Nanopart. Res. 21, 8–19 (2019)

    Article  PubMed  CAS  Google Scholar 

  3. Gentile, L., Mateos, H., Mallardi, A., Dell’Aglio, M., DeGiacomo, A., Cioffi, N., Palazzo, G.: Gold nanoparticles obtained by ns-pulsed laser ablationin liquids (ns-PLAL) are arranged in the form of fractal clusters. J. Nanopart. Res. 23, 35–46 (2021)

    Article  CAS  Google Scholar 

  4. Kakhki, R.M., Hedayat, S., Mohammadzadeh, K.: Novel, green and low cost synthesis of Ag nanoparticles with superior adsorption and solar based photocatalytic activity. J. Mater. Sci. 30, 8788–8795 (2019)

    Google Scholar 

  5. Kakhki, R.M., Ahsani, F.: New and effective ZnO and Zn3(VO4)2 visible nano photocatalysts with enhanced photocatalytic performance. J. Mater. Sci. 29, 3767–3774 (2018)

    Google Scholar 

  6. Irshad, A., Sarwar, N., Sadia, H., Riaz, M., Sharif, S., Shahid, M., Khan, J.A.: Silver nano-particles: synthesis and characterization by using glucans extracted from Pleurotus ostreatus. Appl. Nanosci. 10, 3205–3214 (2020)

    Article  CAS  Google Scholar 

  7. Zhang, J.X., Liu, S., Yan, C., Wang, X.J., Wang, L., Yu, Y.M., Li, S.Y.: Abrasion properties of self-suspended hairy titanium dioxide nanomaterials. Appl. Nanosci. 7, 691–700 (2017)

    Article  CAS  Google Scholar 

  8. Mane, R.S., Pathan, H.M., Lokhande, C., Han, S.H.: An effective use of nanocrystalline CdO thin films in dye-sensitized solar cells. Sol. Energy 80, 185–190 (2006)

    Article  CAS  Google Scholar 

  9. Khairy, M., Ayouba, H.A., Banks, C.E.: Large-scale production of CdO/Cd(OH)2 nanocomposites for non-enzyme sensing and supercapacitor applications. RSC Adv. 8, 921–930 (2018)

    Article  CAS  PubMed Central  Google Scholar 

  10. Ou, F., Bruce, B.D., Yi, F., Liu, B., Hseih, C., Chang, R.P.H., Ho, S.T.: Ohmic contact of cadmium oxide, a transparent conducting oxide, to n-type indium phosphide. ACS Appl. Mater. Interfaces. 3, 1341–1345 (2011)

    Article  CAS  PubMed  Google Scholar 

  11. Mostafa, A.M., Yousef, S.A., Eisa, W.H., Ewaida, M.A., Al-Ashkar, E.A.: Synthesis of cadmium oxide nanoparticles by pulsed laser ablation in liquid environment. Optik 144, 679–684 (2017)

    Article  CAS  Google Scholar 

  12. Aldwayyan, A.S., Al-Jekhedab, F.M., Al-Noaimi, M., Hammouti, B., Hadda, T.B., Suleiman, M., Warad, I.: Synthesis and characterization of CdO nanoparticles starting from organometalic dmphen-CdI2 complex. Int. J. Electrochem. Sci. 8, 10506–10514 (2013)

    CAS  Google Scholar 

  13. Giribabu, K., Suresh, R., Vijayalakshmi, L., Stephen, A., Narayanan, V.: Synthesis of cadmium oxide and its electrochemical detection of pollutants. Adv. Mater. Res. 678, 369–372 (2013)

    Article  CAS  Google Scholar 

  14. Khanjani, N., Jafari, M., Ahmadi Mousavi, E.: Breast milk contamination with lead and cadmium and its related factors in Kerman. Iran. J. Environ. Health Sci. Eng. 16, 323–335 (2018)

    Article  CAS  PubMed  Google Scholar 

  15. Sharafi, K., Fatahi, N., Yarmohamadi, H., Moradi, M., Dargahi, A.: Measuring the concentration of cadmium and lead in two makeup products (lipstick and dye). J. Health 8, 143–150 (2017)

    Google Scholar 

  16. Taneja, P., Manjuladevi, V., Gupta, K.K., Gupta, R.K.: Detection of cadmium ion in aqueous medium by simultaneous measurement of piezoelectric and electrochemical responses. Sens. Actuators B 268, 144–149 (2018)

    Article  CAS  Google Scholar 

  17. Belkhamsa, N., Ksibi, M., Chtaini, A.: Development of electrochemical sensor for the detection of cadmium, copper and lead. Am. J. Adv. Drug Del. 10, 1–11 (2016)

    Google Scholar 

  18. Thipnet, P., Sawangwong, P., Issro, C., Chodjarusawad, T.: Portable voltammetric device for detecting heavy metal contamination. Am. J. Eng. Res. 5, 285–296 (2016)

    Google Scholar 

  19. Çubuk, S., Yilmaz, Ö., Kok, E., Kahraman, M.: Determination of Cd (II) ions by using cyclodextrin-based polymeric fluorescence sensor. J. Turk. Chem. Soc. A 4, 537–548 (2017)

    Google Scholar 

  20. Fındıkoglu, M.S., Fırat, M., Chormey, D.S., Turak, F., Şahin, Ç., Bakırdere, S.: Determination of cadmium in tap, sea and waste water samples by vortex-assisted dispersive liquid-liquid-solidified floating organic drop microextraction and slotted quartz tube FAAS after complexation with an imidazole based ligand. Water Air Soil Pollut. 229, Article 37 (2018).

  21. Magalhaes, T.S., Reis, B.F.: A novel multicommuted flow analysis strategy for the spectrophotometric determination of cadmium in water at μgL-1 levels without using a preconcentration step. Anal. Methods 10, 900–909 (2018)

    Article  Google Scholar 

  22. Khan, N., Kazi, T.G., Afridi, H.I., Arain, M.B.: Determination of cadmium in human serum and blood samples after dispersive liquid-liquid microextraction using a task-specific ionic liquid. J. Anal. Let. 51, 673–685 (2018)

    Article  CAS  Google Scholar 

  23. Liu, F., Shen, T., Kong, W., Peng, J., Zhang, C., Song, K., Wang, W., Zhang, C., He, Y.: Quantitative analysis of cadmium in tobacco roots using laser-induced breakdown spectroscopy with variable index and chemometrics. Front Plant Sci. 9, Article 1316 (2018).

  24. Razghandi, F., Rounaghi, G., Mohammadzadeh Kakhki, R.: Complexation study of dibenzo-18-crown-6 with UO22+ cation in binary mixed non-aqueous solutions. J. Incl. Phenom. Macrocycl. Chem. 73, 279–286 (2012)

    Article  CAS  Google Scholar 

  25. Mohammadzadeh Kakhki, R.: Application of crown ethers as stationary phase in the chromatographic methods. J. Incl. Phenom. Macrocycl. Chem. 75, 11–22 (2013)

    Article  CAS  Google Scholar 

  26. Rounaghi, G.H., Ghaemi, A.: A silver (I) selective PVC membrane electrode based on 1,13-bis(8-quinolyl)-1,4,7,10,13-pentaoxatridecane as an ionophore. J. Electrochem. Soc. 159, F97–F102 (2012)

    Article  CAS  Google Scholar 

  27. Ghaemi, A., Tavakkoli, H., Mombeni, T.: Fabrication of a highly selective cadmium (II) sensor based on 1,13-bis(8-quinolyl)-1,4,7,10,13-pentaoxatridecane as a supramolecular ionophore. Mater. Sci. Eng. C 38, 186–191 (2014)

    Article  CAS  Google Scholar 

  28. Ghaemi, A., Ghorbani Banuti, A.: Highly selective lead (II) coated graphite sensor based on 4,13-didecyl-1,7,10,16-tetraoxa-4,13-diazacyclooctadecane as a neutral ionophore. Russ. J. Inorg. Chem. 63, 89–97 (2018)

    Article  Google Scholar 

  29. Luboch, E., Jeszke, M., Szarmach, M., Łukasik, N.: New bis(azobenzocrown)s with dodecylmethylmalonyl linkers as ionophores for sodium selective potentiometric sensors. J. Incl. Phenom. Macrocycl. Chem. 86, 323–335 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Luo, H., Chen, L.X., Ge, Q.M., Liu, M., Tao, Z., Zhou, Y.H., Cong, H.: Applications of macrocyclic compounds for electrochemical sensors to improve selectivity and sensitivity. J. Incl. Phenom. Macrocycl. Chem. 95, 171–198 (2019)

    Article  CAS  Google Scholar 

  31. Wardak, C., Marczewska, B., Lenik, J.: An ion-selective electrode with a polymeric membrane containing an active chelating substance. Desalination 163, 69–75 (2004)

    Article  CAS  Google Scholar 

  32. Kor, K., Zarei, K.: Development and characterization of an electrochemical sensor for furosemide detection based on electropolymerized molecularly imprinted polymer. Talanta 146, 181–187 (2016)

    Article  CAS  PubMed  Google Scholar 

  33. Bagheri, H., Hajian, A., Rezaei, M., Shirzadmehr, A.: Composite of Cu metal nanoparticles-multiwall carbon nanotubes-reduced graphene oxide as a novel and high performance platform of the electrochemical sensor for simultaneous determination of nitrite and nitrate. J. Hazard. Mater. 324, 762–772 (2017)

    Article  CAS  PubMed  Google Scholar 

  34. Mohammadzadeh Kakhki, R., Ahsani, F., Yaghoobi Rahni, S.: Characterization and adsorption performance of CdMn2O4 nanocomposite as a new highly efficient adsorbent. Int. J. Environ. Sci. Technol. 16, 5979–5988 (2018)

    Article  CAS  Google Scholar 

  35. Liu, J., Zhao, C., Li, Z., Yu, L., Li, Y., Gu, S., Cao, A., Jiang, W., Liu, J., Yang, C.: Solid-state synthesis and optical properties-controlling studies of CdO nanoparticles. Adv. Mater. Res. 228(229), 580–585 (2011)

    Article  Google Scholar 

  36. Jingui, H., Yong, L., Xiangxin, X., Hongqiang, R., Xiaowei, H., He, Y.: A novel Ce (IV) ion-selective polyvinyl chloride membrane electrode based on HDEHP and HEH/EHP. J. Rare Earths 35, 934–940 (2017)

    Article  Google Scholar 

  37. Mo, Z., Liu, H., Hu, R., Gou, H., Li, Z., Guo, R.: Amino-functionalized graphene/chitosan composite as an enhanced sensing platform for highly selective detection of Cu2+. Ionics 24, 1505–1513 (2018)

    Article  CAS  Google Scholar 

  38. Pięk, M., Wojciechowska, A., Fendrych, K., Piech, R., Paczosa-Bato, B.: A simple way to modify selectivity of sodium sensitive electrodes by using organic conductive crystals. Ionics 25, 2311–2321 (2019)

    Article  CAS  Google Scholar 

  39. Jain, A.K., Gupta, V.K., Ganeshpure, P.A., Raisoni, J.R.: Ni (II)-selective ion sensors of salen type Schiff base chelates. Anal. Chim. Acta 553, 177–184 (2005)

    Article  CAS  Google Scholar 

  40. Jeong, T., Lee, H.K., Jeong, D.C., Jeon, S.: A lead (II)-selective PVC membrane based on a Schiff base complex of N, N’-bis(salicylidene)-2,6-pyridinediamine. Talanta 65, 543–548 (2005)

    Article  CAS  PubMed  Google Scholar 

  41. Armstrong, R.D., Horvai, G.: Properties of PVC based membranes used in ion-selective electrodes. Electrochim. Acta 35, 1–7 (1990)

    Article  CAS  Google Scholar 

  42. de Los, A.M., Perez, A., Martin, L.P., Quintana, J.C., Yazdani-Pedram, M.: Copper (II)-selective potentiometric sensors based on porphyrins in PVC matrix. Sens. Actuators B 89, 262–268 (2003)

    CAS  Google Scholar 

  43. Bakker, E., Buhlmann, P., Pretsch, E.: Carrier-based ion-selective electrodes and bulk optodes. 1. General characteristics. Chem. Rev. 97, 3083–3132 (1997)

    Article  CAS  PubMed  Google Scholar 

  44. Rosatzin, T., Bekker, E., Suzuki, K., Simon, W.: Lipophilic and immobilized anionic additives in solvent polymeric membranes of cation-selective chemical sensors. Anal. Chim. Acta 280, 197–208 (1993)

    Article  CAS  Google Scholar 

  45. Schaller, U., Bakker, E., Spichiger, U.E., Pretsch, E.: Ionic additives for ion-selective electrodes based on electrically charged carriers. Anal. Chem. 66, 391–398 (1994)

    Article  CAS  Google Scholar 

  46. Umezawa, Y., Buhlmann, P., Umezawa, K., Tohda, K., Amemiya, S.: Potentiometric Selectivity Coefficients of Ion-selective electrodes, Part I. Inorganic Cations. Pure Appl. Chem. 72, 1851–2082 (2000)

    Article  CAS  Google Scholar 

  47. Shamsipur, M., Mashhadizadeh, M.H.: Cadmium ion-selective electrode based on tetrathia-12-crown-4. Talanta 53, 1065–1071 (2001)

    Article  CAS  PubMed  Google Scholar 

  48. Gupta, V.K., Kumar, A., Kumar, J.P.: PVC-based membranes of dicyclohexano-24-crown-8 as Cd (II) selective sensor. Electrochim. Acta 52, 736–741 (2006)

    Article  CAS  Google Scholar 

  49. Gupta, V.K., Jain, A.K., Ludwig, R., Maheshwari, G.: Electroanalytical studies on cadmium (II) selective potentiometric sensors based on t-butyl thiacalix[4]arene and thiacalix[4]arene in poly(vinyl chloride). Electrochim. Acta 53, 2362–2368 (2008)

    Article  CAS  Google Scholar 

  50. Khamjumphol, U., Watchasit, S., Suksai, C., Janrungroatsakul, W., Boonchiangma, S., Tuntulani, T., Ngeontae, W.: New polymeric membrane cadmium (II)-selective electrodes using tripodal amine based ionophores. Anal. Chim. Acta 704, 73–86 (2011)

    Article  CAS  PubMed  Google Scholar 

  51. Gupta, V.K., Kumar, S., Singh, R., Singh, L.P., Shoora, S.K., Sethi, B.: Cadmium (II) ion sensing through p-tert-butyl calix[6]arene based potentiometric sensor. J. Mol. Liq. 195, 65–68 (2014)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arezoo Ghaemi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghadaksaz, A.G., Ghaemi, A. & Kakhki, R.M. CdO nanoparticles: robust inorganic additive for cadmium selective polymeric electrode based on N-phenylaza-15-crown-5. J Incl Phenom Macrocycl Chem 101, 139–148 (2021). https://doi.org/10.1007/s10847-021-01098-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-021-01098-y

Keywords

Navigation