Skip to main content
Log in

Characterization of group-inclusion complexations of rhodamine derivatives with native and 2,6-di-O-methylated β-cyclodextrins

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

The inclusion complexations of rhodamine derivatives with native and 2,6-di-O-methylated β-cyclodextrins (β-CD and DM-β-CD) were studied spectrophotometrically. Rhodamine derivatives were shown to form 1:1 inclusion complexes with β-CDs by the continuous variation method. The structures of the inclusion complexes were characterized by 1H-1H rotating frame nuclear Overhauser effect spectroscopy (ROESY) NMR measurements. It was found that native β-CD encapsulates the xanthenyl ring of rhodamines into the cyclodextrin cavity, while DM-β-CD forms two group-in complexes (phenyl-in and xanthenyl-in (bidirectional (bimodal) inclusion complexes)) with rhodamines bearing moderately bulky functional groups. Furthermore, we demonstrated the unique thermodynamics for the group-inclusion complex formation by DM-β-CD. The quantum yields for the inclusion complexes of rhodamines were determined using a quantum measurement apparatus equipped with a half-moon unit. The results indicated that the cyclodextrin inclusion of rhodamines with the bulky amino substituents on the xanthenyl ring largely decreases the quantum yield values. Based on these results, the substituent effects on the fluorescence process for the cyclodextrin inclusion complexes of rhodamines were discussed. This study provides useful insights for the functional group recognition of native and modified β-CDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fabiola, Z., Antonio, C., Arturo, E., Alberto, T., Pedro, M.: Triple channel sensing of Pb(II) Ions by a simple multiresponsive ferrocene receptor having a 1-deazapurine backbone. Org. Lett. 10, 41–44 (2008)

    Article  Google Scholar 

  2. Fabbizzi, L., Poggi, A.: Sensors and switches from supramolecular chemistry. Chem. Soc. Rev. 25, 197–202 (1995)

    Article  Google Scholar 

  3. Guiyuan, J., Sheng, W., Wenfang, Y., Lei, J., Yanlin, S., He, T., Daoben, Z.: Highly fluorescent contrast for rewritable optical storage based on photochromic bisthienylethene-bridged naphthalimide dimer. Chem. Mater. 18, 235–237 (2006)

    Article  Google Scholar 

  4. Pu, S., Ding, H., Liu, G., Zheng, C., Xu, H.: Multiaddressing fluorescence switch based on a new photochromic diarylethene with a triazole-linked rhodamine B unit. J. Phys. Chem. 118, 7010–7017 (2014)

    CAS  Google Scholar 

  5. Yang, Y.K., Yook, K.J., Tae, J.: A rhodamine-based fluorescent and colorimetric chemodosimeter for the rapid detection of Hg2+ ions in aqueous media. J. Am. Chem. Soc. 127, 16760–16761 (2005)

    Article  CAS  Google Scholar 

  6. Zhang, X.-F., Zhang, J., Lu, X.: The fluorescence properties of three rhodamines dye analogues: acridine red, pyronin Y and pyronin B. J. Fluoresc. 25, 1151–1158 (2015)

    Article  CAS  Google Scholar 

  7. Chang, T.-L., Cheung, H.C.: A model for molecules with twisted intramolecular charge transfer characteristics: solvent polarity effect on the nonradiative rates of dyes in a series of water-ethanol mixture solvents. Chem. Phys. Lett. 173, 343–348 (1990)

    Article  CAS  Google Scholar 

  8. Selwyn, J.E., Steinfeld, J.I.: Aggregation equilibria of xanthene dyes. J. Phys. Chem. 76, 762–774 (1972)

    Article  CAS  Google Scholar 

  9. Halterman, R.L., Moore, J.L., Yakshe, K.A., Halterman, J.A.I., Woodson, K.A.: Inclusion complexes of cationic xanthene dyes in cucurbit[7]uril. J. Incl. Phenom. Macrocycl. Chem. 66, 231–241 (2010)

    Article  CAS  Google Scholar 

  10. Mohanty, J., Nau, W.M.: Ultrastable rhodamine with cucurbituril. Angew. Chem. Int. Ed. 44, 3750–3754 (2005)

    Article  CAS  Google Scholar 

  11. Buschmann, H.-J., Schollmeyer, E.: Stabilization of dyes against hydrolytic decomposition by the formation of inclusion compounds. J. Incl. Phenom. Macrocycl. Chem. 7, 133–141 (1992)

    Google Scholar 

  12. Mohanty, J., Pal, H., Ray, A.K., Kumar, S., Nau, W.M.: Supramolecular dye laser with cucurbit[7]uril in water. Chem. Phys. Chem. 8, 54–56 (2007)

    Article  CAS  Google Scholar 

  13. Saenger, W.: Cyclodextrin inclusion compounds in research and industry. Angew Chem. Int. Ed. Engl. 19, 344–362 (1980)

    Article  Google Scholar 

  14. Wagner, B.D., Fitzpatrick, S.J.: A comparison of the host-guest inclusion complexes of 1,8-ANS and 2,6-ANS in parent and modified cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. 38, 467–478 (2000)

    Article  CAS  Google Scholar 

  15. Velapoldi, R.A., Tonnesen, H.H.: Corrected emission spectra and quantum yields for a series of fluorescent compounds in the visible spectra region. J. Fluoresc. 14, 465–472 (2004)

    Article  CAS  Google Scholar 

  16. Job, P.: Formation and stability of inorganic complexes in solution. Ann. Chim. 9, 113–203 (1928)

    CAS  Google Scholar 

  17. Scott, R.L.: Some comments on the Benesi-Hildebrand equation. Rel. Trav. Chim. Pays-Bas 75, 787–789 (1956)

    Article  CAS  Google Scholar 

  18. Kotake, Y., Janzen, E.G.: Bimodal inclusion of nitroxide radicals by β-cyclodextrin in water as detected by electron spin resonance. J. Am. Chem. Soc. 110, 3699–3701 (1988)

    Article  CAS  Google Scholar 

  19. Casy, A.F., Cooper, A.D., Jefferies, T.M., Caskell, R.M., Greatbanks, D., Pickford, R.: HPLC and 1H-NMR study of chiral recognition in some thromboxane antagonists induced by β-cyclodextrin. J. Pharm. Biomed. Anal. 9, 787–792 (1991)

    Article  CAS  Google Scholar 

  20. Cai, W., Yao, X., Shao, X., Pan, Z.: Bimodal complexation of steroids with cyclodextrins by a flexible docking algorithm. J. Incl. Phenom. Macrocycl. Chem. 51, 41–51 (2005)

    Article  CAS  Google Scholar 

  21. Leffler, J.E.: The interpretation of enthalpy and entropy data. J. Org. Chem. 31, 533–537 (1966)

    Article  CAS  Google Scholar 

  22. Drexhang, K.H.: Schäfer, F.P (ed) Dye Laser. Springer, Berlin (1977)

    Google Scholar 

  23. Arbeloa, T.L., Arbeloa, F.L., Bartolome, P.H., Arbeloa, I.L.: On the mechanism of radiationless deactivation of rhodamines. Chem. Phys. 160, 123–130 (1992)

    Article  Google Scholar 

  24. Vogel, M., Rettig, W., Sens, R., Drexhage, K.H.: Structural relaxation of rhodamine dyes with different N-substitution patterns: a study of fluorescence decay times and quantum yields. Chem. Phys. Lett. 147, 452–459 (1988)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshimi Sueishi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 420 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sueishi, Y., Matsumoto, Y., Kimata, Y. et al. Characterization of group-inclusion complexations of rhodamine derivatives with native and 2,6-di-O-methylated β-cyclodextrins. J Incl Phenom Macrocycl Chem 96, 365–372 (2020). https://doi.org/10.1007/s10847-020-00979-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-020-00979-y

Keywords

Navigation