Skip to main content
Log in

Inclusion complexes of some thiourea derivatives in cyclodextrins

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

The formation of the inclusion complexes of five thioureea derivatives both with α- and β-cyclodextrins is studied. The most stable conformers of these thioureea derivatives are selected. The deformation, binding and stabilization energies are evaluated by DFT calculations considering the dispersion corrections at the level D3. Basis set superposition errors were computed by counterpoise procedure. It is proved that a thioureea derivative can be inserted both in the cavity of a single cyclodextrin and of a cyclodextrin dimer, forming in both cases a soluble supramolecular structure. In the latter case the stability of the inclusion complex is mainly due to interaction between the two cyclodextrins. The formation of a supramolecular structure composed by one thioureea derivative and two cyclodextrins is possible by the insertion of a thioureea derivative in a cyclodextrin dimer as well as by the addition of a second cyclodextrin to an inclusion complex formed by one thioureea derivative and one cyclodextrin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nagaraju, M., Narahari Sastry, G.: Theoretical studies on inclusion complexes of cyclodextrins. J. Phys. Rev. A. 113, 9533–9542 (2009)

    CAS  Google Scholar 

  2. Fromming, K.-H., Szejtli, J.: Cyclodextrins in pharmacy. In: Davies, E.D., Iwamoto, T., Lipkowski, J., Saenger, W. (eds.) Topics in Inclusion Science, pp. 9–85. Springer, Dordrecht (1993)

    Google Scholar 

  3. Martin del Vale, E.M.: Cyclodextrins and their uses: a review. Process Biochem. 39, 1033–1046 (2004)

    Article  CAS  Google Scholar 

  4. Sbârcea, L., Udrescu, L., Ledeţi, I., Szabadai, Z., Fuliaş, A., Sbârcea, C.: β-Cyclodextrin inclusion complexes of lisinopril and zofenopril. J. Therm. Anal. Calorim. 123, 2377–2390 (2016)

    Article  CAS  Google Scholar 

  5. Brewster, M.E., Loftsson, T.: Cyclodextrins as pharmaceutical solubilizers. Adv. Drug Deliv. Rev. 59, 645–666 (2007)

    Article  CAS  PubMed  Google Scholar 

  6. Ruan, L.P., Yu, B.Y., Fu, G.M., Zhu, D.N.: Improving the solubility of ampelopsin by solid dispersions and inclusion complexes. J. Pharm. Biomed. Anal. 38, 457–464 (2005)

    Article  CAS  PubMed  Google Scholar 

  7. Tárkányi, G., Németh, K., Mizsei, R., Tőke, O., Visy, J., Simonyi, M., Jicsinszky, L., Szemán, J., Szente, L.: Structure and stability of warfarin-sodium inclusion complexes formed with permethylated monoamino-β-cyclodextrin. J. Pharm. Biomed. Anal. 72, 292–298 (2013)

    Article  CAS  PubMed  Google Scholar 

  8. Niccoli, M., Oliva, R., Castronuovo, G.: Cyclodextrin–protein interaction as inhibiting factor against aggregation. J. Therm. Anal. Calorim. 127, 1491–1499 (2017)

    Article  CAS  Google Scholar 

  9. Crupi, V., Majolino, D., Venuti, V., Guella, G., Mancini, I., Rossi, B., Verrocchio, P., Stancanelli, R.: Temperature effect on the vibrational dynamics of cyclodextrin inclusion complexes: investigation by FTIR-ATR spectroscopy and numerical simulation. J. Phys. Chem. A 114, 6811–6817 (2010)

    Article  CAS  PubMed  Google Scholar 

  10. Aigner, Z., Berkesi, O., Farkas, G., Szabó-Révész, P.: DSC, X-ray and FTIR studies of a gemfibrozil/dimethyl-β-cyclodextrin inclusion complex produced by co-grinding. J. Pharm. Biomed. 57, 62–67 (2012)

    Article  CAS  Google Scholar 

  11. de Sousa, F.B., Oliveira, M.F., Lula, I.S., Sansiviero, M.T.C., Cortés, M.E., Sinisterra, R.D.: Study of inclusion compound in solution involving tetracycline and β-cyclodextrin by FTIR-ATR. Vib. Spectrosc. 46, 57–62 (2008)

    Article  CAS  Google Scholar 

  12. Lucarini, M., Pedulli, G.F., Lazzari, D.: EPR properties of two new cyclic phosphinylhydrazyl radicals and of their inclusion complexes with cyclodextrins. J. Org. Chem. 65, 2723–2727 (2000)

    Article  CAS  PubMed  Google Scholar 

  13. Ioniță, G.: Inclusion complexes between β-cyclodextrin and biradicals with a rigid aromatic skelet. Rev. Roum. Chim. 53, 439–445 (2008)

    Google Scholar 

  14. Floare, C.G., Pîrnău, A., Bogdan, M.: 1H-NMR spectroscopic characterization of inclusion complexes of tolfenamic and flufenamic acids with β-cyclodextrin. J. Mol. Struct. 1044, 72–78 (2013)

    Article  CAS  Google Scholar 

  15. Ikeda, H., Ikuta, N., Nakata, D., Fukumi, H., Terao, K.: Spectroscopic studies of R(+)-α-lipoic acid—cyclodextrin complexes. J. Incl. Phenom. Macrocycl. 73, 443–447 (2012)

    Article  CAS  Google Scholar 

  16. de Jesus, M.B., Pinto, L.M.A., Fraceto, L.F., Takahata, Y., Lino, A.C.S., Jaime, C., de Paula, E.: Theoretical and experimental study of a praziquantel and β-cyclodextrin inclusion complex using molecular mechanic calculations and 1H-nuclear magnetic resonance. J. Pharm. Biomed. Anal. 41, 1428–1432 (2006)

    Article  CAS  PubMed  Google Scholar 

  17. Zime-Diawara, H., Dive, G., Piel, G., Moudachirou, M., Frederich, M., Quetin-Leclercq, J., Evrard, B.: Understanding the interactions between artemisinin and cyclodextrins: spectroscopic studies and molecular modeling. J. Incl. Phenom. Macrocycl. Chem. 74, 305–315 (2012)

    Article  CAS  Google Scholar 

  18. Alexandrino, G.L., Calderini, A., Morgon, N.H., Pessine, F.B.T.: Spectroscopic (fluorescence, 1D-ROESY) and theoretical studies of the thiabendazole and β-cyclodextrin inclusion complex. J. Incl. Phenom. Macrocycl. Chem. 75, 93–99 (2013)

    Article  CAS  Google Scholar 

  19. Lipkowitz, K.B.: Applications of computational chemistry to the study of cyclodextrins. Chem. Rev. 98, 1829–1873 (1988)

    Article  Google Scholar 

  20. Avakyan, V.G., Nazarov, V.B., Alfimov, M.V., Bagatur’yants, A.A.: Structure of guest-host complexes of β-cyclodextrines with arene: a quantum-chemical study. Russ. Chem. Bull. 48, 1933–1944 (1999)

    Article  Google Scholar 

  21. Liu, L., Guo, Q.X.: Use of quantum chemical methods to study cyclodextrin chemistry. J. Incl. Phenom. Macrocycl. Chem. 50, 95–103 (2004)

    Article  CAS  Google Scholar 

  22. Liu, P., Xu, H., Zhang, D., Zhan, J.: Molecular inclusion of PCB126 by β-cyclodextrin: a combined molecular dynamics simulation and quantum chemical study. J. Incl. Phenom. Macrocycl. Chem. 76, 301–309 (2013)

    Article  CAS  Google Scholar 

  23. Fatiha, M., Leila, L., Leila, N., Eddine, K.D.: Computational study on the encapsulation of ethylparaben into β-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 76, 379–384 (2013)

    Article  CAS  Google Scholar 

  24. Waller, M.P., Kruse, H., Mück-Lichtenfeld, C., Grimme, S.: Investigating inclusion complexes using quantum chemical methods. Chem. Soc. Rev. 41, 3119–3128 (2012)

    Article  CAS  PubMed  Google Scholar 

  25. Messner, M., Kurkov, S.V., Jansook, P., Loftsson, T.: Self-assembled cyclodextrin aggregates and nanoparticles. Int. J. Pharm. 387, 199–208 (2010)

    Article  CAS  PubMed  Google Scholar 

  26. Saenger, W.: Crystal packing patterns of cyclodextrin inclusion complexes. Int. J. Pharm. 2, 445–454 (1984)

    CAS  Google Scholar 

  27. Avakyan, V.G., Nazarov, V.B., Alfimov, M.V., Bagatur′yants, A.A., Voronezheva, N.I.: The role of intra- and intermolecular hydrogen bonds in formation of β-cyclodextrin head-to-head and head-to-tail dimers. The results of ab initio and semiempirical quantum-chemical calculations. Russ. Chem. Bull. Int. Ed. 50, 206–216 (2001)

    Article  CAS  Google Scholar 

  28. Rudyak, V.Y., Avakyan, V.G., Nazarov, V.B., Voronezheva, N.I.: DFT calculation of α-cyclodextrin dimers. Contribution of hydrogen bonds to the energy of formation. Russ. Chem. Bull. Int. Ed. 55, 1337–1345 (2006)

    Article  CAS  Google Scholar 

  29. Bonnet, P., Jaime, C., Morin-Allory, L.: α-, β-, and γ-cyclodextrin dimers. Molecular modeling studies by molecular mechanics and molecular dynamics simulations. J. Org. Chem. 66, 689–692 (2001)

    Article  CAS  PubMed  Google Scholar 

  30. Nascimento Jr., C.S., Anconi, C.P.A., Dos Santos, H.F., De Almeida, W.B.: Theoretical study of α-cyclodextrin dimers. J. Phys. Chem. A 109, 3209–3219 (2005)

    Article  CAS  PubMed  Google Scholar 

  31. Anconi, C.P.A., Nascimento Jr., C.S., De Almeida, W.B., Dos Santos, H.F.: Theoretical study of covalently bound Α-cyclodextrin associations. J. Phys. Chem. 116, 18958–18964 (2012)

    CAS  Google Scholar 

  32. Ryzhakov, A., Thi, T.D., Stappaerts, J., Bertoletti, L., Kimpe, K., Sá Couto, A.R., Saokham, P., Van den Mooter, G., Augustijns, P., Somsen, G.W., Kurkov, S., Inghelbrecht, S., Arien, A., Jimidar, M.I., Schrijnemakers, K., Loftsson, T.: Self-assembly of cyclodextrins and their complexes in aqueous solutions. J. Pharm. Sci. 105, 2556–2569 (2016)

    Article  CAS  PubMed  Google Scholar 

  33. Limban, C., Missir, A.V., Chiriță, I.C., Nițulescu, G.M., Morusciag, L., Stecoza, C.E., Nuță, D.C., Bădiceanu, C.D., Căproiu, M.T., Drăghici, C.: Synthesis of new 2-(4-methyl-phenoxymethyl) benzoic acid thioureides. Farmacia 6, 659–668 (2008)

    Google Scholar 

  34. Bădiceanu, C.D., Drăghici, C., Missir, A.V.: Synthesis and characterization of some biological active compounds on the basis of 2-thiophene carboxylic acid with heterocyclic amines. Rev. Roum. Chim. 55, 307–311 (2010)

    Google Scholar 

  35. Limban, C., Balotescu-Chifiriuc, M.C., Missir, A.V., Chiriță, I.C., Bleotu, C.: Antimicrobial activity of some new thioureides derived from 2-(4-chlorophenoxymethyl) benzoic acid. Molecules 13, 567–580 (2010)

    Article  Google Scholar 

  36. Bădiceanu, C.D., Nuță, D.C., Missir, A.V., Hrubaru, M., Delcaru, C., Dițu, M.L., Chifiriuc, M.C., Limban, C.: New derivatives of 2-thiophene carboxylic acid: synthesis, structure and antimicrobial studies. Farmacia 66, 237–241 (2018)

    Article  Google Scholar 

  37. Bădiceanu, C.D., Drăghici, C., Missir, A.V., Chifiriuc, M.C., Stecoza, C.E.: Synthesis, characterization and antimicrobial evaluation of some new thioureas derived from 3-thiophenecarboxylic acid. Rev. Chim. 65, 160–163 (2014)

    Google Scholar 

  38. Bădiceanu, C.D., Nuță, D.C., Missir, A.V., Hrubaru, M., Delcaru, C., Dițu, M.L., Chifiriuc, M.C., Limban, C.: Synthesis, structural, phisico-chemical characterization and antimicrobial activity screening of new thiourea derivative. Farmacia 66, 149–156 (2018)

    Article  Google Scholar 

  39. Grimme, S.: Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006)

    Article  CAS  PubMed  Google Scholar 

  40. Peverati, R., Baldridge, K.K.: Implementation and performance of DFT-D with respect to basis set and functional for study of dispersion interactions in nanoscale aromatic hydrocarbons. J. Chem. Theory Comput. 4, 2030–2048 (2008)

    Article  CAS  PubMed  Google Scholar 

  41. Grimme, S., Antony, J., Ehrlich, S., Krieg, S.: A consistent and accurate ab initio parametrization of density functional dispersion correction (dft-d) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010)

    Article  CAS  PubMed  Google Scholar 

  42. Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., Koseki, S., Matsunaga, N., Nguyen, K.A., Su, S.J., Windus, T.L.: General atomic and molecular electronic structure system. J. Comput. Chem. 14, 1347–1363 (1993)

    Article  CAS  Google Scholar 

  43. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Zakrzewski, J.A., Montgomery, J.J.A., Stratmann, R.E., Burant, J.C., Dapprich, S., Millam, J.M., Daniels, A.D., Kudin, K.N., Strain, M.C., Farkas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C., Clifford, S., Ochterski, J., Petersson, G.A., Ayala, P.Y., Cui, Q., Morokuma, K., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Cioslowski, J., Ortiz, J.V., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Gomperts, R., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Gonzalez, C., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Andres, J.L., Gonzalez, C., HeadGordon, M., Replogle, E.S., Pople, J.A.: GAUSSIAN 03, Revision C.02. Gaussian Inc., Wallingford, CT (2004)

  44. Schaftenaar, G., Noordik, J.H.: Molden: a pre- and post-processing program for molecular and electronic structures. J. Comput. Aided Mol. Des. 14, 123–134 (2000)

    Article  CAS  PubMed  Google Scholar 

  45. Grimme, S.: Density functional theory with London dispersion corrections. WIREs Comput. Mol. Sci. 1, 211–228 (2011)

    Article  CAS  Google Scholar 

  46. Boys, S.F., Bernardi, F.: Calculation of small molecular interactions by differences of separate total energies - some procedures with reduced errors. Mol. Phys. 19, 553–566 (1970)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This paper was partly done within the research program “Chemical Thermodynamics and Kinetics. Quantum chemistry” of the “Ilie Murgulescu” Institute of Physical Chemistry, financed by the Romanian Academy. The authors gratefully acknowledge the computing time granted by the Institute of Physical Chemistry “Ilie Murgulescu” on the HPC-ICF infrastructure that was developed in the frame of the Capacities Project 84 CpI/13.09.2007—National Authority for Scientific Research, Bucharest, Romania. We thank to Dr. Viorel Chihaia for his critical remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Munteanu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stoicescu, C.S., Neacşu, A.D., Bădiceanu, C.D. et al. Inclusion complexes of some thiourea derivatives in cyclodextrins. J Incl Phenom Macrocycl Chem 96, 275–283 (2020). https://doi.org/10.1007/s10847-019-00968-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-019-00968-w

Keywords

Navigation