Skip to main content
Log in

Cation triggered spring-like helicates based on ketone-substituted bis-catechol ligands

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

The development of switchable molecular units is a challenging task of modern synthetic and supramolecular chemistry. In the present study, alkyl bridged bis(catecholketone) ligands are introduced in order to obtain helicates which cation triggered show some spring type dynamics. The preparation of the ligands as well as of the complexes and corresponding switching processes are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Scheme 3
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. See Refs. [1,2,3,4].

  2. See Ref. [5].

  3. See Ref. [6].

  4. See Refs. [7, 8].

  5. See Ref. [9].

  6. See Ref. [10].

  7. See Refs. [11, 12].

  8. See Ref. [13, 14].

  9. See Refs. [15, 16].

  10. See Ref. [17].

  11. See Ref. [18].

  12. See Ref. [19].

  13. See Refs. [20, 21].

  14. See Ref. [22].

  15. See Ref. [23].

  16. See Ref. [24].

  17. See Ref. [25].

  18. See Ref. [26].

  19. See Ref. [27].

References

  1. Feynman, R.P.: There’s plenty of room at the bottom. J. Microelectromech. Syst. 1, 60–66 (1992) (1992)

    Article  Google Scholar 

  2. Erbas-Cakmak, S., Leigh, D.A., McTernan, C.T., Nussbaumer, A.L.: Artificial molecular machines. Chem. Rev. 115, 10081–10206 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Balzani, V., Venturi, M., Credi, A.: Molecular Devices and Machines. Wiley-VCH, Weinheim (2003)

    Google Scholar 

  4. Kinbara, K., Aida, T.: Toward intelligent molecular machines: directed motions of biological and artificial molecules and assemblies. Chem. Rev. 105, 1377–1400 (2005)

    Article  CAS  PubMed  Google Scholar 

  5. Geeves, M.A.: Stretching the lever-arm theory. Nature 415, 129 (2002)

    Article  CAS  PubMed  Google Scholar 

  6. Howard, J.: Molecular motors: structural adaptations to cellular functions. Nature 389, 561 (1997)

    Article  CAS  PubMed  Google Scholar 

  7. Hayashi, S., Ueno, H., Shaikh, A.R., Umemura, M., Kamiya, M., Ito, Y., Ikeguchi, M., Komoriya, Y., Iino, R., Noji, H.: Molecular mechanism of ATP hydrolysis in F1-ATPase revealed by molecular simulations and single-molecule observations. J. Am. Chem. Soc. 134, 8447–8454 (2012)

    Article  CAS  PubMed  Google Scholar 

  8. Gil-Ramirez, G., Leigh, D.A., Stephens, A.J.: Catenanes: fifty years of molecular links. Angew. Chem. Int. Ed. 54, 6110–6150 (2015)

    Article  CAS  Google Scholar 

  9. Schalley, C.A., Beizai, K., Vögtle, F.: On the way to rotaxane-based molecular motors: studies in molecular mobility and topological chirality. Acc. Chem. Res. 34, 465–476 (2001)

    Article  CAS  PubMed  Google Scholar 

  10. Kudernac, T., Ruangsupapichat, N., Parschau, M., Maciá, B., Katsonis, N., Harutyunyan, S.R., Ernst, K.-H., Feringa, B.L.: Electrically driven directional motion of a four-wheeled molecule on a metal surface. Nature 479, 208–211 (2011)

    Article  CAS  PubMed  Google Scholar 

  11. Badjić, J.D., Balzani, V., Credi, A., Silvi, S., Stoddart: A molecular elevator Science 303, 1845–1849 (2014)

    Article  CAS  Google Scholar 

  12. Collin, J.P., Dietrich-Buchecker, C., Gaviña, P., Jimenez-Molero, M.C., Sauvage, J.-P.: Shuttles and muscles: linear molecular machines based on transition metals. Acc. Chem. Res. 34, 477–487 (2001)

    Article  CAS  PubMed  Google Scholar 

  13. Bruns, C.J., Stoddart, J.F.: Rotaxane-based molecular muscles. Acc. Chem. Res. 47, 2186–2199 (2014)

    Article  CAS  PubMed  Google Scholar 

  14. Kay, E.R., Leigh, D.A., Zerbetto, F.: Synthetic molecular motors and mechanical machines. Angew. Chem. Int. Ed. 46, 72–191 (2007)

    Article  CAS  Google Scholar 

  15. Miwa, K., Furusho, Y., Yashima, E.: Ion-triggered spring-like motion of a double helicate accompanied by anisotropic twisting. Nature Chem. 2, 444–449 (2010)

    Article  CAS  Google Scholar 

  16. Suzuki, Y., Nakamura, T., Iida, H., Ousaka, N., Yashima, E.: Allosteric regulation of unidirectional spring-like motion of double-stranded helicates. J. Am. Chem. Soc. 138, 4852–4859 (2016)

    Article  CAS  PubMed  Google Scholar 

  17. Feringa, B. L.: Molecular machines: springing into action. Nature Chem. 2, 429–430 (2010)

    Article  CAS  Google Scholar 

  18. Albrecht, M., Blau, O., Fröhlich, R.: An expansible metalla-cryptand as a component of a supramolecular combinatorial library formed from di(8-hydroxyquinoline) ligands and gallium(III)- or zinc(II)ions. Chem. Eur. J. 5, 48–56 (1999)

    Article  CAS  Google Scholar 

  19. Albrecht, M., Mirtschin, S., de Groot, M., Janser, I., Runsink, J., Raabe, G., Kogej, M., Schalley, C.A., Fröhlich, R.: Hierarchical assembly of helicate-type dinuclear titanium(IV) complexes. J. Am. Chem. Soc. 127, 10371–10387 (2005)

    Article  CAS  PubMed  Google Scholar 

  20. Chen, X., Gerger, T.M., Räuber, C., Raabe, G., Göb, C., Oppel, I.M., Albrecht, M.: A helicate based three-state molecular switch. Angew. Chem. Int. Ed. 57, 11817–11820 (2018)

    Article  CAS  Google Scholar 

  21. Albrecht, M., Chen, X., VanCraen, D.: From hierarchical helicates to functional supramolecular devices, Chem. Eur. J. (2018). https://doi.org/10.1002/chem.201804963

    Article  PubMed  Google Scholar 

  22. Brown, H.C., Garg, C.P., Liu, K.-T.: Oxidation of secondary alcohols in diethyl ether with aqueous chromic acid. Convenient procedure for the preparation of ketones in high epimeric purity. J. Org. Chem. 36, 387–390 (1971)

    Article  CAS  Google Scholar 

  23. Sharma, S.K., Miller, M.J., Payne, S.M.: Spermexatin and spermexatol: new synthetic spermidine-based siderophore analogs. J. Med. Chem. 32, 357–367 (1989)

    Article  CAS  PubMed  Google Scholar 

  24. Otwinowski, Z., Minor, W.: Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    Article  CAS  PubMed  Google Scholar 

  25. Otwinowski, Z., Borek, D., Majewski, W., Minor, W.: Multiparametric scaling of diffraction intensities. Acta Cryst. A59, 228–234 (2003)

    Article  CAS  Google Scholar 

  26. Sheldrick, G.M.: Phase annealing in SHELX-90: direct methods for larger structures. Acta Cryst. A46, 467–473 (1990)

    Article  CAS  Google Scholar 

  27. Sheldrick, G.M.: A short history of SHELX. Acta Cryst. A64, 112–122 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. W. Bettray and Ms C. Dittmer for the detection of the mass spectra as well as Ms. Leonie Schütz for help in the ligand synthesis.

Funding

Funding for Xiaofei Chen was provided by China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Albrecht.

Additional information

Dedicated to Prof. Karsten Gloe on the occasion of his 70th birthday.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Baumert, M., Fröhlich, R. et al. Cation triggered spring-like helicates based on ketone-substituted bis-catechol ligands. J Incl Phenom Macrocycl Chem 94, 133–140 (2019). https://doi.org/10.1007/s10847-019-00888-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-019-00888-9

Keywords

Navigation