Skip to main content
Log in

Targeted siRNA delivery to tumor cells by folate-PEG-appended dendrimer/glucuronylglucosyl-β-cyclodextrin conjugate

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

We previously reported the utility of 6-O-α-(4-O-α-d-glucuronyl)-d-glucosyl-β-cyclodextrin (GUG-β-CyD) conjugates with polyamidoamine dendrimer [GUG-β-CDE (generation 3; G3)] as siRNA carriers. In this study, to prepare GUG-β-CDE (G3) possessing a targeting ability to tumor cells overexpressing folate receptor-α (FR-α), we newly synthesized folate-polyethylene glycol (PEG)-appended GUG-β-CDEs (G3) [Fol-PEG-GUG-β-CDEs (G3)] having degrees of substitution of folate (DSF) of 3.9, 6.7 and 7.3, and evaluated their utility as tumor-selective siRNA carriers. Of various Fol-PEG-GUG-β-CDEs (G3), Fol-PEG-GUG-β-CDE (G3, DSF6.7) showed the highest siRNA transfection activity at a charge ratio of 50 (carrier/siRNA) in both 786-0-luc cells [FR-α (+)] and KB cells [FR-α (+)]. In addition, the cellular uptake of the complex was significantly decreased by an addition of folic acid in a concentration-dependent manner, suggesting its FR-α-mediated endocytosis pathway. Moreover, Fol-PEG-GUG-β-CDE (G3, DSF6.7)/siRNA complex induced a potent RNAi effect, comparable to Lipofectamine™ 2000/siRNA complex. Furthermore, Fol-PEG-GUG-β-CDE (G3, DSF6.7) complex with siRNA against Polo-like kinase 1 (siPLK1) showed a significant cytotoxic activity in KB cells. Thus, Fol-PEG-GUG-β-CDE (G3, DSF6.7) has the potential as the targeted siRNA delivery carrier for FR-α-overexpressing tumor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

RNAi:

RNA interference

siRNA:

Small interfering RNA

FR:

Folate receptor

FA:

Folic acid

CyD:

Cyclodextrin

GUG-β-CyD:

6-O-α-(4-O-α-d-Glucuronyl)-d-glucosyl-β-cyclodextrin

PAMAM:

Polyamindoamine

G:

Generation

GUG-β-CDE:

GUG-β-CyD/dendrimer conjugate

DS:

Degrees of substitution of GUG-β-CyD

α-CDE:

α-CyD/dendrimer conjugate

PEG:

Polyethylene glycol

Fol-PEG-GUG-β-CDE:

Folate-PEG-appended GUG-β-CDE

FBS:

Fetal bovine serum

DSF:

Degrees of substitution of folate

PLK1:

Polo-like kinase 1

siPLK1:

siRNA against PLK1

References

  1. Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E., Mello, C.C.: Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998)

    Article  CAS  PubMed  Google Scholar 

  2. Ragelle, H., Riva, R., Vandermeulen, G., Naeye, B., Pourcelle, V., Le Duff, C.S., D’Haese, C., Nysten, B., Braeckmans, K., De Smedt, S.C., Jérôme, C., Préat, V.: Chitosan nanoparticles for siRNA delivery: optimizing formulation to increase stability and efficiency. J. Control. Release 176, 54–63 (2014)

    Article  CAS  PubMed  Google Scholar 

  3. Wu, S.Y., Lopez-Berestein, G., Calin, G.A., Sood, A.K.: Targeting the undruggable: advances and obstacles in current RNAi therapy. Sci. Transl. Med. 6, 240ps247–240ps247 (2014)

    Google Scholar 

  4. Caplen, N.J., Parrish, S., Imani, F., Fire, A., Morgan, R.A.: Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc. Natl. Acad. Sci. USA 98, 9742–9747 (2001)

    Article  CAS  PubMed  Google Scholar 

  5. Lee, S.J., Kim, M.J., Kwon, I.C., Roberts, T.M.: Delivery strategies and potential targets for siRNA in major cancer types. Adv. Drug Deliv. Rev. 104, 2–15 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Al-Qadi, S., Grenha, A., Remuñán-López, C.: Chitosan and its derivatives as nanocarriers for siRNA delivery. J. Drug Deliv. Sci. Tech. 22, 29–42 (2012)

    Article  CAS  Google Scholar 

  7. Conde, J., Ambrosone, A., Hernandez, Y., Tian, F., McCully, M., Berry, C.C., Baptista, P.V., Tortiglione, C., de la Fuente, J. M.: 15 years on siRNA delivery: beyond the state-of-the-art on inorganic nanoparticles for RNAi therapeutics. Nano Today 10, 421–450 (2015)

    Article  CAS  Google Scholar 

  8. Chakraborty, C., Sharma, A.R., Sharma, G., Doss, C.G.P., Lee, S.-S.: Therapeutic miRNA and siRNA: moving from bench to clinic as next generation medicine. Mol. Ther. Nucleic Acids 8, 132–143 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bobbin, M.L., Rossi, J.J.: RNA interference (RNAi)-based therapeutics: delivering on the promise? Annu. Rev. Pharmacol. Toxicol. 56, 103–122 (2016)

    Article  CAS  PubMed  Google Scholar 

  10. Kim, H.J., Kim, A., Miyata, K., Kataoka, K.: Recent progress in development of siRNA delivery vehicles for cancer therapy. Adv. Drug Deliv. Rev. 104, 61–77 (2016)

    Article  CAS  PubMed  Google Scholar 

  11. Quici, S., Casoni, A., Foschi, F., Armelao, L., Bottaro, G., Seraglia, R., Bolzati, C., Salvarese, N., Carpanese, D., Rosato, A.: Folic acid-conjugated europium complexes as luminescent probes for selective targeting of cancer cells. J. Med. Chem. 58, 2003–2014 (2015)

    Article  CAS  PubMed  Google Scholar 

  12. Mironava, T., Simon, M., Rafailovich, M.H., Rigas, B.: Platinum folate nanoparticles toxicity: cancer vs. normal cells. Toxicol. In Vitro 27, 882–889 (2013)

    Article  CAS  PubMed  Google Scholar 

  13. Ledermann, J.A., Canevari, S., Thigpen, T.: Targeting the folate receptor: diagnostic and therapeutic approaches to personalize cancer treatments. Ann. Oncol. 26, 2034–2043 (2015)

    Article  CAS  PubMed  Google Scholar 

  14. Cheung, A., Bax, H.J., Josephs, D.H., Ilieva, K.M., Pellizzari, G., Opzoomer, J., Bloomfield, J., Fittall, M., Grigoriadis, A., Figini, M., Canevari, S., Spicer, J.F., Tutt, A.N., Karagiannis, S.N.: Targeting folate receptor a for cancer treatment. Oncotarget 7, 52553–52574 (2016)

    PubMed  PubMed Central  Google Scholar 

  15. Parker, N., Turk, M.J., Westrick, E., Lewis, J.D., Low, P.S., Leamon, C.P.: Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay. Anal. Biochem. 338, 284–293 (2005)

    Article  CAS  PubMed  Google Scholar 

  16. Chen, C., Ke, J., Zhou, X.E., Yi, W., Brunzelle, J.S., Li, J., Yong, E.-L., Xu, H.E., Melcher, K.: Structural basis for molecular recognition of folic acid by folate receptors. Nature 500, 486–489 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sun, L., Wu, Q., Peng, F., Liu, L., Gong, C.: Strategies of polymeric nanoparticles for enhanced internalization in cancer therapy. Colloids Surf. B 135, 56–72 (2015)

    Article  CAS  Google Scholar 

  18. Betzel, T., Müller, C., Groehn, V., Müller, A., Reber, J., Fischer, C.R., Krämer, S.D., Schibli, R., Ametamey, S.M.: Radiosynthesis and preclinical evaluation of 3′-aza-2′-[18F]fluorofolic acid: a novel PET radiotracer for folate receptor targeting. Bioconjug. Chem. 24, 205–214 (2013)

    Article  CAS  PubMed  Google Scholar 

  19. Toffoli, G., Cernigoi, C., Russo, A., Gallo, A., Bagnoli, M., Boiocchi, M.: Overexpression of folate binding protein in ovarian cancers. Int. J. Cancer. 74, 193–198 (1998)

    Article  Google Scholar 

  20. Chen, H., Ahn, R., Van den Bossche, J., Thompson, D.H., O’Halloran, T.V.: Folate-mediated intracellular drug delivery increases the anticancer efficacy of nanoparticulate formulation of arsenic trioxide. Mol. Cancer Ther. 8, 1955–1963 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Srinivasarao, M., Galliford, C.V., Low, P.S.: Principles in the design of ligand-targeted cancer therapeutics and imaging agents. Nat. Rev. Drug Discov. 14, 203–219 (2015)

    Article  CAS  PubMed  Google Scholar 

  22. Antony, A.C.: The biological chemistry of folate receptors. Blood 79, 2807–2820 (1992)

    CAS  PubMed  Google Scholar 

  23. Abdelwahab, A.F., Ohyama, A., Higashi, T., Motoyama, K., Khaled, K.A., Sarhan, H.A., Hussein, A.K., Arima, H.: Preparation and evaluation of polyamidoamine dendrimer conjugate with glucuronylglucosyl-β-cyclodextrin (G3) as a novel carrier for siRNA. J. Drug Target. 22, 927–934 (2014)

    Article  CAS  PubMed  Google Scholar 

  24. Ishiguro, T., Fuse, T., Oka, M., Kurasawa, T., Nakamichi, M., Yasumura, Y., Tsuda, M., Yamaguchi, T., Nogami, I.: Synthesis of branched cyclomaltooligosaccharide carboxylic acids (cyclodextrin carboxylic acids) by microbial oxidation. Carbohydr. Res. 331, 423–430 (2001)

    Article  CAS  PubMed  Google Scholar 

  25. Ohyama, A., Higashi, T., Motoyama, K., Arima, H.: In vitro and in vivo tumor-targeting siRNA delivery using folate-PEG-appended dendrimer (G4)/α-cyclodextrin conjugates. Bioconjug. Chem. 27, 521–532 (2016)

    Article  CAS  PubMed  Google Scholar 

  26. Arima, H., Chihara, Y., Arizono, M., Yamashita, S., Wada, K., Hirayama, F., Uekama, K.: Enhancement of gene transfer activity mediated by mannosylated dendrimer/α-cyclodextrin conjugate (generation 3, G3). J. Control. Release 116, 64–74 (2006)

    Article  CAS  PubMed  Google Scholar 

  27. Ishiyama, M., Tominaga, H., Shiga, M., Sasamoto, K., Ohkura, Y., Ueno, K.: A combined assay of cell viability and in vitro cytotoxicity with a highly water-soluble tetrazolium salt, neutral red and crystal violet. Biol. Pharm. Bull. 19, 1518–1520 (1996)

    Article  CAS  PubMed  Google Scholar 

  28. Reddy, J.A., Low, P.S.: Folate-mediated targeting of therapeutic and imaging agents to cancers. Crit. Rev. Ther. Drug Carrier Syst. 15, 587–627 (1998)

    Article  CAS  PubMed  Google Scholar 

  29. Ohyama, A., Higashi, T., Motoyama, K., Arima, H.: Ternary complexes of folate-PEG-appended dendrimer (G4)/α-cyclodextrin conjugate, siRNA and low-molecular-weight polysaccharide sacran as a novel tumor-selective siRNA delivery system. Int. J. Biol. Macromol. 99, 21–28 (2017)

    Article  CAS  PubMed  Google Scholar 

  30. Shen, X.-C., Zhou, J., Liu, X., Wu, J., Qu, F., Zhang, Z.-L., Pang, D.-W., Quelever, G., Zhang, C.-C., Peng, L.: Importance of size-to-charge ratio in construction of stable and uniform nanoscale RNA/dendrimer complexes. Org. Biomol. Chem. 5, 3674–3681 (2007)

    Article  CAS  PubMed  Google Scholar 

  31. Lee, D.J., Kessel, E., Lehto, T., Liu, X., Yoshinaga, N., Padari, K., Chen, Y.C., Kempter, S., Uchida, S., Rädler, J.O., Pooga, M., Sheu, M.T., Kataoka, K., Wagner, E.: Systemic delivery of folate-PEG siRNA lipopolyplexes with enhanced intracellular stability for in vivo gene silencing in leukemia. Bioconjug. Chem. 28, 2393–2409 (2017)

    Article  CAS  PubMed  Google Scholar 

  32. Anno, T., Higashi, T., Motoyama, K., Hirayama, F., Uekama, K., Arima, H.: Potential use of glucuronylglucosyl-β-cyclodextrin/dendrimer conjugate (G2) as a DNA carrier in vitro and in vivo. J. Drug Target. 20, 272–280 (2012)

    Article  CAS  PubMed  Google Scholar 

  33. Anno, T., Higashi, T., Motoyama, K., Hirayama, F., Uekama, K., Arima, H.: Possible enhancing mechanisms for gene transfer activity of glucuronylglucosyl-β-cyclodextrin/dendrimer conjugate. Int. J. Pharm. 426, 239–247 (2012)

    Article  CAS  PubMed  Google Scholar 

  34. Anno, T., Higashi, T., Hayashi, Y., Motoyama, K., Jono, H., Ando, Y., Arima, H.: Potential use of glucuronylglucosyl-β-cyclodextrin/dendrimer conjugate (G2) as a siRNA carrier for the treatment of familial amyloidotic polyneuropathy. J. Drug Target. 22, 883–890 (2014)

    Article  CAS  PubMed  Google Scholar 

  35. Takai, N., Hamanaka, R., Yoshimatsu, J., Miyakawa, I.: Polo-like kinases (Plks) and cancer. Oncogene 24, 287–291 (2005)

    Article  CAS  PubMed  Google Scholar 

  36. Lacaze, P., Raza, S., Sing, G., Page, D., Forster, T., Storm, P., Craigon, M., Awad, T., Ghazal, P., Freeman, T.C.: Combined genome-wide expression profiling and targeted RNA interference in primary mouse macrophages reveals perturbation of transcriptional networks associated with interferon signalling. BMC Genomics 10, 372 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jensen, K., Anderson, J.A., Glass, E.J.: Comparison of small interfering RNA (siRNA) delivery into bovine monocyte-derived macrophages by transfection and electroporation. Vet. Immunol. Immunopathol. 158, 224–232 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jevprasesphant, R., Penny, J., Jalal, R., Attwood, D., McKeown, N.B., D’Emanuele, A.: The influence of surface modification on the cytotoxicity of PAMAM dendrimers. Int. J. Pharm. 252, 263–266 (2003)

    Article  CAS  PubMed  Google Scholar 

  39. Maruyama, K., Iwasaki, F., Takizawa, T., Yanagie, H., Niidome, T., Yamada, E., Ito, T., Koyama, Y.: Novel receptor-mediated gene delivery system comprising plasmid/protamine/sugar-containing polyanion ternary complex. Biomaterials 25, 3267–3273 (2004)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Ensuiko Sugar Refining for providing GUG-CyD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidetoshi Arima.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammed, A.F.A., Higashi, T., Motoyama, K. et al. Targeted siRNA delivery to tumor cells by folate-PEG-appended dendrimer/glucuronylglucosyl-β-cyclodextrin conjugate. J Incl Phenom Macrocycl Chem 93, 41–52 (2019). https://doi.org/10.1007/s10847-018-0834-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-018-0834-9

Keywords

Navigation