Skip to main content

Advertisement

Log in

Efficient production of series sulfopropyl ether β-cyclodextrin derivatives using the eco-friendly microwave technique

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

A high-efficiency microwave irradiation (MW) assisted protocol was proposed to synthesize series SPE-β-CD with specific degree of substitution (DS) in the sodium hydroxide solution. This protocol provided an eco-friendly way to modify the cyclodextrins with bulky sulfopropyl substituent on the purpose of avoiding organic solvents and high quantities of thermal energy. Temperature and energy distribution became more uniform under the new method accordingly. Therefore, not only the reaction time reduced significantly from over 20 h to a few hours, but also the DS increased up according to 1H NMR spectroscopy, MS and elemental analysis results. Most importantly, the effects of reaction parameters on DS were compared both under MW method and conventional heating method, and were sufficiently studied to guarantee the aforementioned results could be better reproduced and DS of products could become more specific through the synthesis process. Products structures were characterized by FT-IR, DSC, and 13C NMR spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chen, Y., Liu, Y.: Construction and functions of cyclodextrin-based 1D supramolecular strands and their secondary assemblies. Adv. Mater. 27, 5403–5409 (2015). https://doi.org/10.1002/adma.201501216

    Article  CAS  Google Scholar 

  2. Wang, J., Wei, M., Rao, G., Evans, D.G., Duan, X.: Structure and thermal decomposition of sulfated β-cyclodextrin intercalated in a layered double hydroxide. J. Solid State Chem. 177(1), 366–371 (2004). https://doi.org/10.1016/j.jssc.2003.09.006

    Article  CAS  Google Scholar 

  3. Ambrus, R., Aigner, Z., Catenacci, L., Bettinetti, G., Szabó-Révész, P., Sorrenti, M.: Physico-chemical characterization and dissolution properties of nifluminic acid-cyclodextrin-PVP ternary systems. J. Therm. Anal. Calorim. 104(1), 291–297 (2010). https://doi.org/10.1007/s10973-010-1069-1

    Article  Google Scholar 

  4. Chekirou, N.L., Benomrane, I., Lebsir, F., Krallafa, A.M.: Theoretical and experimental study of the tetracain/β-cyclodextrin inclusion complex. J. Incl. Phenom. Macrocycl. Chem. 74(1–4), 211–221 (2012). https://doi.org/10.1007/s10847-011-0102-8

    Article  CAS  Google Scholar 

  5. Zielenkiewicz, W., Koźbiał, M., Golankiewicz, B., Poznański, J.: Enhancement of aqueous solubility of tricyclic acyclovir derivatives by their complexation with hydroxypropyl-β-cyclodextrin. J. Therm. Anal. Calorim. 101(2), 555–560 (2010). https://doi.org/10.1007/s10973-010-0847-0

    Article  CAS  Google Scholar 

  6. Huang, D., Zhang, Y., Zhang, H.: A novel synthesis of ethyl carbonate derivatives of beta-cyclodextrin. Carbohydr. Res. 370, 82–85 (2013). https://doi.org/10.1016/j.carres.2013.01.022

    Article  CAS  Google Scholar 

  7. Caliceti, P., Salmaso, S., Semenzato, A.: Synthesis and physicochemical characterization of Folate-Cyclodextrin Bioconjugate for active drug delivery. Bioconjugate Chem. 14(5), 899–908 (2003)

    Article  Google Scholar 

  8. Vahid Z., Roger A.R., Esteban R.B.: Effect of alkyl chain length and degree of substitution on the complexation of sulfoalkyl ether beta-cyclodextrins with steroids. J. Pharm. Sci. 86(2), 220–224 (1997). https://doi.org/10.1021/js960236u

    Article  Google Scholar 

  9. Song, A., Wang, J., Liu, C., Deng, L.: Sulfoalkyl ether β-cyclodextrin derivatives synthesized by a single step method as pharmaceutical biomaterials. Chin. Sci. Bull. 54(18), 3187–3199 (2009). https://doi.org/10.1007/s11434-009-0262-8

    Article  CAS  Google Scholar 

  10. Zia, V., Rajewski, R.A., Bornancini, E.R., Luna, E.A., Stella, V.J.: Effect of alkyl chain length and degree of substitution on the complexation of sulfoalkyl ether beta-cyclodextrins with steroids. J. Pharm. Sci. 86(2), 220–224 (1997). https://doi.org/10.1021/js960236u

    Article  CAS  Google Scholar 

  11. Kirschner, D.L., Green, T.K.: Nonaqueous synthesis of a selectively modified, highly anionic sulfopropyl ether derivative of cyclomaltoheptaose (beta-cyclodextrin) in the presence of 18-crown-6. Carbohydr. Res. 340(11), 1773–1779 (2005). https://doi.org/10.1016/j.carres.2005.04.012

    Article  CAS  Google Scholar 

  12. Ilisz, I., Fodor, G., Berkecz, R., Ivanyi, R., Szente, L., Peter, A.: Enantioseparation of beta-substituted tryptophan analogues with modified cyclodextrins by capillary zone electrophoresis. J. Chromatogr. A 1216(15), 3360–3365 (2009). https://doi.org/10.1016/j.chroma.2009.01.083

    Article  CAS  Google Scholar 

  13. Kirschner, D., Green, T., Hapiot, F., Tilloy, S., Leclercq, L., Bricout, H., Monflier, E.: Heptakis(2,3-di-O-methyl-6-O-sulfopropyl)-β-cyclodextrin: a genuine supramolecular carrier for aqueous organometallic catalysis. Adv. Synth. Catal. 348(3), 379–386 (2006). https://doi.org/10.1002/adsc.200505417

    Article  CAS  Google Scholar 

  14. Chen, W., Wan, X., Xu, N.: Ordered conducting polypyrrole doped with sulfopropyl ether of β-cyclodextrin. Macromolecules 36, 276–278 (2003)

    Article  CAS  Google Scholar 

  15. Ma, D.-Y., Zhang, Y.-M., Xu, J.-N.: The synthesis and process optimization of sulfobutyl ether β-cyclodextrin derivatives. Tetrahedron. 72(22), 3105–3112 (2016). https://doi.org/10.1016/j.tet.2016.04.039

    Article  CAS  Google Scholar 

  16. Tongiani, S., Velde, D.V., Ozeki, T., Stella, V.J.: Sulfoalkyl ether-alkyl ether cyclodextrin derivatives, their synthesis, NMR characterization, and binding of 6alpha-methylprednisolone. J. Pharm. Sci. 94(11), 2380–2392 (2005). https://doi.org/10.1002/jps.20367

    Article  CAS  Google Scholar 

  17. Qi, Q., Edward, T., Sherril, D.C.: Sulfoalkyl ether beta-cyclodextrin derivatives synthesis and characterizations. J. Incl. Phenom. Macrocycl. Chem. 43, 213–221 (2002)

    Article  Google Scholar 

  18. Biswas, A., Appell, M., Liu, Z., Cheng, H.N.: Microwave-assisted synthesis of cyclodextrin polyurethanes. Carbohydr. Polym. 133, 74–79 (2015). https://doi.org/10.1016/j.carbpol.2015.06.044

    Article  CAS  Google Scholar 

  19. Stass, D.V., Woodward, J.R., Timmel, C.R., Hore, P.J.: Radiofrequency magnetic field effects on chemical reation yields. Chem. Phys. Lett. 329, 15–22 (2000)

    Article  CAS  Google Scholar 

  20. Martina, K., Cravotto, G., Caporaso, M., Rinaldi, L., Villalonga-Barber, C., Ermondi, G.: Efficient microwave-assisted synthetic protocols and in silico behaviour prediction of per-substituted beta-cyclodextrins. Org. Biomol. Chem. 11(33), 5521–5527 (2013). https://doi.org/10.1039/c3ob40909k

    Article  CAS  Google Scholar 

  21. Puglisi, A., Spencer, J., Clarke, J., Milton, J.: Microwave-assisted synthesis of 6-amino-β-cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. 73(1–4), 475–478 (2011). https://doi.org/10.1007/s10847-011-0054-z

    Google Scholar 

  22. Roy, A., Saha, S., Roy, M.N.: Exploration of inclusion complexes of probenecid with α and β-cyclodextrins: Enhancing the utility of the drug. J. Mol. Struct. 1144, 103–111 (2017). https://doi.org/10.1016/j.molstruc.2017.05.002

    Article  CAS  Google Scholar 

  23. Nafee, N., Hirosue, M., Loretz, B., Wenz, G., Lehr, C.M.: Cyclodextrin-based star polymers as a versatile platform for nanochemotherapeutics: enhanced entrapment and uptake of idarubicin. Colloids Surf. B 129, 30–38 (2015). https://doi.org/10.1016/j.colsurfb.2015.03.014

    Article  CAS  Google Scholar 

  24. Peng, J., Wang, Y., Wang, J., Zhou, X., Liu, Z.: A new biosensor for glucose determination in serum based on up-converting fluorescence resonance energy transfer. Biosens. Bioelectron. 28(1), 414–420 (2011). https://doi.org/10.1016/j.bios.2011.07.057

    Article  CAS  Google Scholar 

  25. Ge, D.-L., Zhang, X.-Z., Chen, S.-Y., Pu, L., Yu, X.-Q.: Microwave-assisted synthesis of 2-pyridinylethyl indazoles. Tetrahedron Lett. 56(33), 4811–4814 (2015). https://doi.org/10.1016/j.tetlet.2015.06.065

    Article  CAS  Google Scholar 

  26. Mangolim, C.S., Moriwaki, C., Nogueira, A.C., Sato, F., Baesso, M.L., Neto, A.M., Matioli, G.: Curcumin-beta-cyclodextrin inclusion complex: stability, solubility, characterisation by FT-IR, FT-Raman, X-ray diffraction and photoacoustic spectroscopy, and food application. Food Chem. 153, 361–370 (2014). https://doi.org/10.1016/j.foodchem.2013.12.067

    Article  CAS  Google Scholar 

  27. Zia, V., Vander Velde, D., Stella, V.J.: Extrathermodynamic relations in the binding of charged and neutral substrates to sulfobutylether-β-CDs (SBE-β-CDs) and a 2-hydroxypropyl-β-CD (HP-β-CD). J. Incl. Phenom. Macrocycl. Chem. 79(3–4), 503–512 (2013). https://doi.org/10.1007/s10847-013-0374-2

    Google Scholar 

  28. Mazinani, S.A., DeLong, B., Yan, H.: Microwave radiation accelerates trypsin-catalyzed peptide hydrolysis at constant bulk temperature. Tetrahedron Lett. 56(42), 5804–5807 (2015). https://doi.org/10.1016/j.tetlet.2015.09.003

    Article  CAS  Google Scholar 

  29. Yallapu, M.M., Jaggi, M., Chauhan, S.C.: Beta-cyclodextrin-curcumin self-assembly enhances curcumin delivery in prostate cancer cells. Colloids Surf. B 79(1), 113–125 (2010). https://doi.org/10.1016/j.colsurfb.2010.03.039

    Article  CAS  Google Scholar 

  30. Xu, J., Zhang, Y., Li, X., Zheng, Y.: Inclusion complex of nateglinide with sulfobutyl ether β-cyclodextrin: preparation, characterization and water solubility. J. Mol. Struct. 1141, 328–334 (2017). https://doi.org/10.1016/j.molstruc.2017.03.116

    Article  CAS  Google Scholar 

  31. Shinde, V.V., Jeong, D., Joo, S.W., Cho, E., Jung, S.: Mono-6-deoxy-6-aminopropylamino-β-cyclodextrin as a supramolecular catalyst for the synthesis of indolyl 1 H-pyrrole via one-pot four component reaction in water. Catal. Commun. 103, 83–87 (2018). https://doi.org/10.1016/j.catcom.2017.10.001

    Article  CAS  Google Scholar 

  32. Ortiz Mellet, C., Garcia Fernandez, J.M., Benito, J.M.: Cyclodextrin-based gene delivery systems. Chem. Soc. Rev. 40(3), 1586–1608 (2011). https://doi.org/10.1039/c0cs00019a

    Article  Google Scholar 

  33. Liu, W., Li, C., Gu, Y., Tang, L., Zhang, Z., Yang, M.: One-step synthesis of β-cyclodextrin functionalized graphene/Ag nanocomposite and its application in sensitive determination of 4-Nitrophenol. Electroanalysis (2013). https://doi.org/10.1002/elan.201300227

    Google Scholar 

Download references

Acknowledgements

This work was supported by grants from AnBaoLiHeng Co. Ltd. (Tianjin City, China). We thank Dr. Qiao B. for his help with MS characterization, Dr. Ding G. for his help with NMR characterization, Dr. Jin X H. for his help with IR characterization, and Dr. Dun W.Q. for DSC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yimin Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Zhang, Y., Xu, J. et al. Efficient production of series sulfopropyl ether β-cyclodextrin derivatives using the eco-friendly microwave technique. J Incl Phenom Macrocycl Chem 91, 115–124 (2018). https://doi.org/10.1007/s10847-018-0806-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-018-0806-0

Keywords

Navigation