Skip to main content
Log in

Molecular simulation of liquid crystal sensor based on competitive inclusion effect

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

With the progressive understanding of liquid crystal materials that rely on the interface interactions, optical properties of liquid crystal are attracting attention as a detector for chemicals and biomolecules. In this work, a recently reported liquid crystal sensing system based on the competitive inclusion effect of β-cyclodextrin (β-CD) was studied. Quantum mechanical calculations were applied to study different β-CD inclusion complexes of methyl blue (MB), 4-cyano-4′-pentyl biphenyl (5CB), sodium dodecyl sulfonate (SDS), dopamine (DA) and their inclusion processes. The work shows that DA cannot be an analyte for the liquid crystal sensor as it could not compete for the cavity of β-CD with SDS. However, MB molecule can push SDS out of the β-CD cavity so as to induce the change in optical appearance when MB forms a 1:2 inclusion complex. The simulated absorption spectrum is in agreement with experiment results, implying that MB molecule may exist in both 1:1 and 1:2 inclusion complexes in the system of liquid crystal sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Engeldinger, E., Armspach, D., Matt, D.: Capped cyclodextrins. Chem. Rev. 103(11), 4147–4174 (2003)

    Article  CAS  Google Scholar 

  2. Szejtli, J.: Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98(5), 1743–1754 (1998)

    Article  CAS  Google Scholar 

  3. Liu, P., Sun, S., Guo, X., Yang, X., Huang, J., Wang, K., wang, Q., Liu, J., He, L.: Competitive host–guest interaction between β-cyclodextrin polymer and pyrene-labeled probes for fluorescence analyses. Anal. Chem. 87(5), 2665–2671 (2015)

    Article  CAS  Google Scholar 

  4. Ghale, G., Nau, W.M.: Dynamically analyte-responsive macrocyclic host-fluorophore systems. Acc. Chem. Res. 47(7), 2150–2159 (2014)

    Article  CAS  Google Scholar 

  5. Yang, L., Zhao, H., Fan, S., Zhao, G., Ran, X., Li, C.-P.: Electrochemical detection of cholesterol based on competitive host–guest recognition using a β-cyclodextrin/poly(N-acetylaniline)/graphene-modified electrode. RSC. Adv. 5, 64146–64155 (2015)

    Article  CAS  Google Scholar 

  6. Assaf, K.I., Suckova, O., Danaf, N.A., v Glasenapp, V., Gabel, D., Nau, W.M.: Dodecaborate-functionalized anchor dyes for cyclodextrin-based indicator displacement applications. Org. Lett. 18(5), 932–935 (2016)

    Article  CAS  Google Scholar 

  7. Jing, J., Szarpak-Jankowska, A., Guillow, R., Pignot-Paintrand, I., Picart, C., Auzély-Velty, R.: Cyclodextrin/Paclitaxel complex in biodegradable capsules for breast cancer treatment. Chem. Mater. 25(19), 3867–3873 (2013)

    Article  CAS  Google Scholar 

  8. Collings, P.J.: Liquid Crystals: Nature’s Delicate Phase of Matter. Princeton University Press, Princeton (2002)

    Google Scholar 

  9. Brake, J.M., Daschner, M.K., Luk, Y.-Y., Abbott, N.L.: Biomolecular interactions at phospholipid-decorated surfaces of liquid crystals. Science 302(5653), 2094–2097 (2003)

    Article  CAS  Google Scholar 

  10. Brake, J.M., Mezera, A.D., Abbott, N.L.: Effect of surfactant structure on the orientation of liquid crystals at aqueous-liquid crystal interfaces. Langmuir 19(16), 6436–6442 (2003)

    Article  CAS  Google Scholar 

  11. Gupta, V.K., Skaife, J.J., Dubrovsky, T.B., Abbott, N.L.: Optical amplification of ligand-receptor binding using liquid crystals. Science 279(5359), 2077–2080 (1998)

    Article  CAS  Google Scholar 

  12. Shibaev, P.V., Wenzlick, M., Murray, J., Tantillo, A., Howard-Jennings, J.: Rebirth of liquid crystals for sensoric applications: environmental and gas sensors. Adv. Condens. Matter. Phys. 2015, 1–8 (2015)

    Article  Google Scholar 

  13. Brake, J.M., Abbott, N.L.: Coupling of the orientations of thermotropic liquid crystals to protein binding events at lipid-decorated interfaces. Langmuir 23(16), 8497–8507 (2007)

    Article  CAS  Google Scholar 

  14. Clare, B.H., Abbott, N.L.: Orientations of nematic liquid crystals on surfaces presenting controlled densities of peptides: amplification of protein–peptide binding events. Langmuir 21(14), 6451–6461 (2005)

    Article  CAS  Google Scholar 

  15. Bi, X., Lai, S.L., Yang, K.-L.: Liquid crystal multiplexed protease assays reporting enzymatic activities as optical bar charts. Anal. Chem. 81(13), 5503–5509 (2009)

    Article  CAS  Google Scholar 

  16. Bi, X., Hartono, D., Yang, K.-L.: Real-time liquid crystal pH sensor for monitoring enzymatic activities of penicillinase. Adv. Funct. Mater. 19(23), 3760–3765 (2009)

    Article  CAS  Google Scholar 

  17. Jang, C.-H., Cheng, L.-L., Olsen, C.W., Abbott, N.L.: Anchoring of nematic liquid crystals on viruses with different envelope structures. Nano. Lett. 6(5), 1053–1058 (2006)

    Article  CAS  Google Scholar 

  18. Sivakumar, S., Wark, K.L., Gupta, J.K., Abbott, N.L., Caruso, F.: Liquid crystal emulsions as the basis of biological sensors for the optical detection of bacteria and viruses. Adv. Funct. Mater. 19(14), 2260–2265 (2009)

    Article  CAS  Google Scholar 

  19. Han, G.R., Song, Y.J., Jang, C.H.: Label-free detection of viruses on a polymeric surface using liquid crystals. Coll. Surf. B 116, 147–152 (2014)

    Article  CAS  Google Scholar 

  20. Kim, H.-R., Kim, J.-H., Kim, T.-S., Oh, S.-W., Choi, E.-Y.: Optical detection of deoxyribonucleic acid hybridization using an anchoring transition of liquid crystal alignment. Appl. Phys. Lett. 87(14), 143901 (2005)

    Article  Google Scholar 

  21. Price, A.D., Schwartz, D.K.: DNA hybridization-induced reorientation of liquid crystal anchoring at the nematic liquid crystal/aqueous interface. J. Am. Chem. Soc. 130(26), 8188–8194 (2008)

    Article  CAS  Google Scholar 

  22. Lowe, A.M., Abbott, N.L.: Liquid crystalline materials for biological applications. Chem. Mater. 24(5), 746–758 (2012)

    Article  CAS  Google Scholar 

  23. Bai, Y., Abbott, N.L.: Recent advances in colloidal and interfacial phenomena involving liquid crystals. Langmuir 27(10), 5719–5738 (2011)

    Article  CAS  Google Scholar 

  24. Zuo, F., Liao, Z., Zhao, C., Qin, Z., Li, X., Zhang, C., Liu, D.: An air-supported liquid crystal system for real-time reporting of host–guest inclusion events. Chem. Commun. 50, 1857–1860 (2014)

    Article  CAS  Google Scholar 

  25. Ogoshi, T., Harada, A.: Chemical sensors based on cyclodextrin derivatives. Sensors 8(8), 4961–4982 (2008)

    Article  CAS  Google Scholar 

  26. Munir, S., Park, S.Y.: The development of a cholesterol biosensor using a liquid crystal/aqueous interface in a SDS-included β-cyclodextrin aqueous solution. Anal. Chim. Acta 893, 101–107 (2015)

    Article  CAS  Google Scholar 

  27. Deng, J., Lu, X., Constant, C., Dogariu, A., Fang, J.: Design of β-CD-surfactant complex-coated liquid crystal droplets for the detection of cholic acid via competitive host-guest recognition. Chem. Commun. 51, 8912–8915 (2015)

    Article  CAS  Google Scholar 

  28. Connors, K.A.: The stability of cyclodextrin complexes in solution. Chem. Rev. 97(5), 1325–1358 (1997)

    Article  CAS  Google Scholar 

  29. Lipkowitz, K.B.: Applications of computational chemistry to the study of cyclodextrins. Chem. Rev. 98(5), 1829–1874 (1998)

    Article  CAS  Google Scholar 

  30. López, C.A., de Vries, A.H., Marrink, S.J.: Molecular mechanism of cyclodextrin mediated cholesterol extraction. PLoS. Comput. Biol. 7(3), e1002020 (2011)

    Article  Google Scholar 

  31. Zhang, Q., Tu, Y., Tian, H., Zhao, Y.-L., Stoddart, J.F., Ågren, H.: Working mechanism for a redox switchable molecular machine based on cyclodextrin: a free energy profile approach. J. Phys. Chem. B. 114(19), 6561–6566 (2010)

    Article  CAS  Google Scholar 

  32. Prabhu, A.A., Rajendiran, N.: Encapsulation of labetalol, pseudoephedrine in β-cyclodextrin cavity: spectral and molecular modeling studies. J. Fluoresc. 22(6), 1461–1474 (2012)

    Article  CAS  Google Scholar 

  33. Egwolf, B., Luo, Y., Walters, D.E., Roux, B.: Ion selectivity of α-hemolysin with β-Cyclodextrin adapter. II. Multi-ion effects studied with grand canonical Monte Carlo/Brownian dynamics simulations. J. Phys. Chem. B. 114(8), 2901–2909 (2010)

    Article  CAS  Google Scholar 

  34. Buvári, Á., Barcza, L., Kajtár, M.: Complex formation of phenolphthalein and some related compounds with β-cyclodextrin. J. Chem. Soc. Perkin. Trans. 2(9), 1687–1690 (1988)

    Article  Google Scholar 

  35. Palomar-Pardavé, M., et al.: Electrochemical and spectrophotometric determination of the formation constants of the ascorbic acid-β-cyclodextrin and dopamine-β-cyclodextrin inclusion complexes. J. Incl. Phenom. Macrocycl. Chem. 69(1), 91–99 (2011)

    Article  Google Scholar 

  36. Frisch, M., et al.,: Gaussian 09, Revision A. 02, Gaussian. Inc., Wallingford (2009). 200

  37. Parr, R.G., Yang, W.: Density-Functional Theory of Atoms and Molecules, vol. 16. Oxford university press, Oxford (1989)

    Google Scholar 

  38. Koch, W., Holthausen, M.C., Holthausen, M.C.: A chemist’s guide to density functional theory, vol. 2. Wiley-Vch, Weinheim (2001)

    Book  Google Scholar 

  39. Stewart, J.J.: Optimization of parameters for semiempirical methods I method. J. Comput. Chem. 10(2), 209–220 (1989)

    Article  CAS  Google Scholar 

  40. Liu, L., Guo, Q.-X.: Use of quantum chemical methods to study cyclodextrin chemistry. J. Incl. Phenom. Macrocycl. Chem. 50(1–2), 95–103 (2004)

    Article  CAS  Google Scholar 

  41. Li, X.-S., Liu, L., Guo, Q.-X., Chu, S.-D., Liu, Y.-C.: PM3 molecular orbital calculations on the complexation of α-cyclodextrin with acetophenone. Chem. Phys. Lett. 307(1–2), 117–120 (1999)

    CAS  Google Scholar 

  42. Becke, A.D.: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98(7), 5648 (1993)

    Article  CAS  Google Scholar 

  43. Stephens, P.J., Devlin, F.J., Chabalowski, C.F., Frisch, M.J.: Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98(45), 11623–11627 (1994)

    Article  CAS  Google Scholar 

  44. Boys, S.F., Bernardi, F.: The calculation of small molecular interaction by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 19(4), 553–566 (1970)

    Article  CAS  Google Scholar 

  45. Kim, C.K., Won, J., Kim, C.K.: Effects of the basis set superposition error on optimized geometries of trimer complexes (Part I). Chem. Phys. Lett. 545, 112–117 (2012)

    Article  CAS  Google Scholar 

  46. Tomasi, J., Mennucci, B., Cammi, R.: Quantum mechanical continuum solvation models. Chem. Rev. 105(8), 2999–3094 (2005)

    Article  CAS  Google Scholar 

  47. Brake, J.M., Abbott, N.L.: An experimental system for imaging the reversible adsorption of amphiphiles at aqueous–liquid crystal interfaces. Langmuir 18(16), 6101–6109 (2002)

    Article  CAS  Google Scholar 

  48. Zhao, G.-C., Zhu, J.-J., Chen, H.-Y.: Spectroscopic studies of the interactive model of methylene blue with DNA by means of β-cyclodextrin. Spectrochim. Acta. Part.A. 55(5), 1109–1117 (1999)

    Article  Google Scholar 

  49. Zhang, G., Shuang, S., Dong, C., Pan, J.: Study on the interaction of methylene blue with cyclodextrin derivatives by absorption and fluorescence spectroscopy. Spectrochim. Acta. Part. A. 59(13), 2935–2941 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Undergraduate Scientific and Technological Innovation Project of Southwest University For Nationalities CX2016SZ062 and the National Natural Science Foundation of China (51273220, 50903011). C.K. KIM thanks for the financial support from INHA University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun-Xian Chen or Chan Kyung Kim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 504 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, QY., Zuo, F., Chong, YY. et al. Molecular simulation of liquid crystal sensor based on competitive inclusion effect. J Incl Phenom Macrocycl Chem 87, 95–103 (2017). https://doi.org/10.1007/s10847-016-0678-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-016-0678-0

Keywords

Navigation