Skip to main content
Log in

Enhancement of in vitro fungicidal activity of fuberidazole to Botrytis cinerea by cucurbiturils

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

The host–guest interaction of fuberidazole (FBZ) fungicide with cucurbituril (CB) macromolecules was characterized in pure water using UV–vis spectrophotometric and NMR techniques. The in vitro applications (at pH 5.5 in pure water) of host–guest complexes were conducted against Botrytis cinerea. While addition of CB5 to FBZ had no significant effect in vitro, mixing CB7 or CB8 with FBZ in a 1:2 ratio improved fungal growth inhibition at least threefold, when compared to the corresponding concentration of the unbound fungicide molecules. Empty CB hosts were completely inactive. Furthermore, the inhibitory activity to B. cinerea was relatively maintained down to a concentration of 5:10 μM of the CB7/8@FBZ complexes, relative to any of controls. Complexation by CB7/8 further improved the photostability of the fungicides with photostabilization factors of 7 and 3, respectively. CB7/8 bound the protonated forms of these guests very strongly but their neutral forms were significantly weaker, which reflects a complexation-induced increase of their pK a values by 3.8 units with CB7 and 1.4 units with CB8. The present investigation constitutes an innovative, nonclassical, approach to enhance fungicides efficacy utilizing macromolecules with a potential application in crop protection technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cram, D.J., Cram, J.M.: Container Molecules and Their Guests. Royal Society of Chemistry, Cambridge (1997)

    Google Scholar 

  2. Ghosh, I., Nau, W.M.: The strategic use of supramolecular pK a shifts to enhance the bioavailability of drugs. Adv. Drug Deliv. Rev. 64(9), 764–783 (2012)

    Article  CAS  Google Scholar 

  3. Day, A.I., Collins, J.G.: Cucurbituril receptors and drug delivery. In: Gale, P.A., Steed, J.W. (eds.) Supramolecular Chemistry: From Molecules to Nanomaterials, vol. 3, pp. 983–1000. Wiley, New York (2012)

    Google Scholar 

  4. Saleh, N., Khaleel, A., Al-Dmour, H., al-Hindawi, B., Yakushenko, E.: Host-guest complexes of cucurbit[7]uril with albendazole in solid state—thermal and structural properties. J. Therm. Anal. Calorim. 111(1), 385–392 (2013)

    Article  CAS  Google Scholar 

  5. Saleh, N., Al-Soud, Y.A., Al-Kaabi, L., Ghosh, I., Nau, W.M.: A coumarin-based fluorescent PET sensor utilizing supramolecular pK a shifts. Tetrahedron Lett. 52(41), 5249–5254 (2011)

    Article  CAS  Google Scholar 

  6. Saleh, N., Al-Rawashdeh, N.A.F.: Fluorescence enhancement of carbendazim fungicide in cucurbit[6]uril. J. Fluoresc. 16(4), 487–493 (2006)

    Article  CAS  Google Scholar 

  7. Bhasikuttan, A.C., Mohanty, J., Nau, W.M., Pal, H.: Efficient fluorescence enhancement and cooperative binding of an organic dye in a supra-biomolecular host-protein assembly. Angew. Chem. Int. Ed. 46(22), 4120–4122 (2007)

    Article  CAS  Google Scholar 

  8. Barooah, N., Mohanty, J., Pal, H., Bhasikuttan, A.C.: Supramolecular assembly of hoechst-33258 with cucurbit[7]uril macrocycle. Phys. Chem. Chem. Phys. 13(28), 13117–13126 (2011)

    Article  CAS  Google Scholar 

  9. Liu, H., Wu, X., Huang, Y., He, J., Xue, S.F., Tao, Z., Zhu, Q.J., Wei, G.: Improvement of antifungal activity of carboxin by inclusion complexation with cucurbit[8]uril. J. Incl. Phenom. Macro. Chem. 71(3–4), 583–587 (2011)

    Article  CAS  Google Scholar 

  10. Masson, E., Ling, X., Joseph, R., Kyeremeh-Mensah, L., Lu, X.: Cucurbituril chemistry: a tale of supramolecular success. RSC Adv. 2(4), 1213–1247 (2012)

    Article  CAS  Google Scholar 

  11. Hettiarachchi, G., Nguyen, D., Wu, J., Lucas, D., Ma, D., Isaacs, L., Briken, V.: Toxicology and drug delivery by cucurbit[n]uril type molecular containers. PLoS ONE 5(5), e10514 (2010)

    Article  Google Scholar 

  12. Uzunova, V.D., Cullinane, C., Brix, K., Nau, W.M., Day, A.I.: Toxicity of cucurbit[7]uril and cucurbit[8]uril: an exploratory in vitro and in vivo study. Org. Biomol. Chem. 8(9), 2037–2042 (2010)

    Article  CAS  Google Scholar 

  13. Bardelang, D., Udachin, K.A., Leek, D.M., Margeson, J.C., Chan, G., Ratcliffe, C.I., Ripmeester, J.A.: Cucurbit[n]urils (n = 5–8): a comprehensive solid state study. Cryst. Growth Des. 11(12), 5598–5614 (2011)

    Article  CAS  Google Scholar 

  14. Moghaddam, S., Yang, C., Rekharsky, M., Ko, Y.H., Kim, K., Inoue, Y., Gilson, M.K.: New ultrahigh affinity host-guest complexes of cucurbit[7]uril with bicyclo[2.2.2]octane and adamantane guests: thermodynamic analysis and evaluation of M2 affinity calculations. J. Am. Chem. Soc. 133(10), 3570–3581 (2011)

    Article  CAS  Google Scholar 

  15. Saleh, N., Koner, A.L., Nau, W.M.: Activation and stabilization of drugs by supramolecular pK a shifts: drug-delivery applications tailored for cucurbiturils. Angew. Chem. Int. Ed. 47(29), 5398–5401 (2008)

    Article  CAS  Google Scholar 

  16. Barooah, N., Mohanty, J., Pal, H., Bhasikuttan, A.C.: Stimulus-responsive supramolecular pK a tuning of cucurbit[7]uril encapsulated coumarin 6 dye. J Phys Chem B 116(12), 3683–3689 (2012)

    Article  CAS  Google Scholar 

  17. Koner, A.L., Ghosh, I., Saleh, N., Nau, W.M.: Supramolecular encapsulation of benzimidazole-derived drugs by cucurbit[7]uril. Can. J. Chem. 89(2), 139–147 (2011)

    Article  CAS  Google Scholar 

  18. Saleh, N., Meetani, M., Al-Kaabi, L., Ghosh, I., Nau, W.M.: Effects of cucurbiturils on tropicamide and potential applications in ocular drug delivery. Supramol. Chem. 23(9), 654–661 (2011)

    CAS  Google Scholar 

  19. Zhao, N., Lloyd, G.O., Scherman, O.A.: Monofunctionalised cucurbit[6]uril synthesis using imidazolium host-guest complexation. Chem. Commun. 48(25), 3070–3072 (2012)

    Article  CAS  Google Scholar 

  20. Ma, D., Hettiarachchi, G., Duc, N., Zhang, B., Wittenberg, J.B., Zavalij, P.Y., Briken, V., Isaacs, L.: Acyclic cucurbit[n]uril molecular containers enhance the solubility and bioactivity of poorly soluble pharmaceuticals. Nat. Chem. 4(6), 503–510 (2012)

    Article  CAS  Google Scholar 

  21. Javris, W.R.: Botryotinia and Botrytis species: taxonomy, physiology, and pathology. Can. Dep. Agric. Monogr. No. 15 (1977)

  22. Williamson, B., Duncan, G.H., Harrison, J.G., Harding, L.A., Elad, Y., Zimand, G.: Effect of humidity on infection of rose petals by dry-inoculated conidia of Botrytis cinerea. Mycol. Res. 99, 1303–1310 (1995)

    Article  Google Scholar 

  23. Elad, Y.: Responses of plants to infection by Botrytis cinerea and novel means involved in reducing their susceptibility to infection. Biol. Rev. 72(3), 381–422 (1997)

    Article  Google Scholar 

  24. Yarden, O., Katan, T.: Mutations leading to substitutions at amino-acids 198 and 200 of β-tubulin that correlate with benomyl-resistance phenotypes of field strains of Botrytis cinerea. Phytopathology 83(12), 1478–1483 (1993)

    Article  CAS  Google Scholar 

  25. Yourman, L.F., Jeffers, S.N.: Resistance to benzimidazole and dicarboximide fungicides in greenhouse isolates of Botrytis cinerea. Plant Dis. 83(6), 569–575 (1999)

    Article  CAS  Google Scholar 

  26. Kanetis, L., Forster, H., Adaskaveg, J.E.: Determination of natural resistance frequencies in penicillium digitatum using a new air-sampling method and characterization of fludioxonil- and pyrimethanil-resistant isolates. Phytopathology 100(8), 738–746 (2010)

    Article  CAS  Google Scholar 

  27. Selms, R.C.D.: Benzimidazoles. I. 2-(Heterocyclic Substituted)benzimidazoles. J. Org. Chem. 27(6), 2163–2165 (1962)

    Article  CAS  Google Scholar 

  28. Tang, H., Fuentealba, D., Ko, Y.H., Selvapalam, N., Kim, K., Bohne, C.: Guest binding dynamics with cucurbit[7]uril in the presence of cations. J. Am. Chem. Soc. 133(50), 20623–20633 (2011)

    Article  CAS  Google Scholar 

  29. Jenkyn, J.F., Prew, R.D.: Activity of 6 fungicides against cereal foliage and root diseases. Ann. Appl. Biol. 75(2), 241–252 (1973)

    Article  CAS  Google Scholar 

  30. Biedermann, F., Uzunova, V.D., Scherman, O.A., Nau, W.M., De Simone, A.: Release of high-energy water as an essential driving force for the high-affinity binding of cucurbit[n]urils. J. Am. Chem. Soc. 134(37), 15318–15323 (2012)

    Article  CAS  Google Scholar 

  31. Nau, W.M., Florea, M., Assaf, K.I.: Deep inside cucurbiturils: physical properties and volume of their inner cavity determine the hydrophobic driving forces for host-guest complexation. Israel J. Chem. 51, 559 (2011)

    Article  CAS  Google Scholar 

  32. Mohanty, J., Nau, W.M.: Ultrastable rhodamine with cucurbituril. Angew. Chem. Int. Ed. 44(24), 3750–3754 (2005)

    Article  CAS  Google Scholar 

  33. Li, J., Loh, X.J.: Cyclodextrin-based supramolecular architectures: syntheses, structures, and applications for drug and gene delivery. Adv. Drug Delivery Rev. 60(9), 1000–1017 (2008)

    Article  CAS  Google Scholar 

  34. Shchepotina, E., Pashkina, E., Yakushenko, E., Kozlov, V.: Cucurbiturils as containers for medicinal compounds. Nanotechnol. Russ. 6(11), 773–779 (2011)

    Article  Google Scholar 

  35. Rekharsky, M.V., Inoue, Y.: Complexation thermodynamics of cyclodextrins. Chem. Rev. 98(5), 1875–1917 (1998)

    Article  CAS  Google Scholar 

  36. Da Silva, E., Lazar, A.N., Coleman, A.W.: Bioharmaceutical applications of calixarenes. J. Drug Deliv. Sci. Technol. 14(1), 3–20 (2004)

    Google Scholar 

  37. AbuQamar, S., Luo, H., Laluk, K., Mickelbart, M.V., Mengiste, T.: Crosstalk between biotic and abiotic stress responses in tomato is mediated by the AIM1 transcription factor. Plant J. 58(2), 347–360 (2009)

    Article  CAS  Google Scholar 

  38. Ware, G.W.: Fundementals of pesticides: a self-instruction guide. Thomson publication, Frensno (1986)

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Office of Research Support and Sponsored Projects at UAEU for their support under the grant numbers 31S075 to S.AQ. and 31S074 to N.S., within the framework of National Research Foundation (NRF) funding program, the Interdisciplinary fund number 31S035 to S.AQ. We would also like to thank Prof. Dr. Werner Nau and his research group for their significant contributions in previous joint accomplishments on the recognitions of benzimidazole fungicides by CB in aqueous solutions. We thank Ms. Zeinab A. Abdalla for her contribution in the initiation of this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Na’il Saleh or Synan F. AbuQamar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 753 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saleh, N., Ajeb, S.M., Sham, A. et al. Enhancement of in vitro fungicidal activity of fuberidazole to Botrytis cinerea by cucurbiturils. J Incl Phenom Macrocycl Chem 79, 301–309 (2014). https://doi.org/10.1007/s10847-013-0352-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-013-0352-8

Keywords

Navigation