Skip to main content
Log in

Host–guest complexes of cucurbit[7]uril with albendazole in solid state

Thermal and structural properties

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The inclusion complex of cucurbit[7]uril (CB7) and albendazole (ABZ) in solid state was prepared by freeze-drying. The formation of a host–guest complex was confirmed by microanalysis, 1H-nuclear magnetic resonance spectroscopy, and fourier transformed-infrared spectroscopy (FT-IR) techniques. The shifts in the NMR peaks supported the encapsulation from the propylthio and not the carbamate site, in agreement with the previously reported results in solution. The N2 adsorption–desorption isotherms indicated no change in the calculated surface area or the pore size distribution for the unbound and CB7-bound ABZ solid drugs. Freeze-drying produced a system with a higher degree of amorphisation as confirmed by the X-ray powder diffraction (XRD) technique. Thermal analysis of the drug-loaded CB7 by using differential scanning calorimetry and thermogravimetry demonstrated the possibility of dehydration at temperature 100 °C beyond the melting point of unbound ABZ since no melting of the samples was observed until the CB7 itself begins to decompose around 300 °C. Putting it all together, the results supported that CB7 imparts significant thermal/physical stability on the ABZ drug in the solid state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chieng N, Rades T, Aaltonen J. An overview of recent studies on the analysis of pharmaceutical polymorphs. J Pharm Biom Anal. 2011;55(4):618–44.

    Article  CAS  Google Scholar 

  2. Brittain HG. Polymorphism in pharmaceutical solids. 2nd ed. New York: Informa Healthcare; 2009.

    Google Scholar 

  3. Yoshioka S, Stella VJ. Stability of drugs and dosage forms. Hingham: Kluwer Academic Publisher; 2000.

    Google Scholar 

  4. Freeman WA, Mock WL, Shih NY. Cucurbituril. J Am Chem Soc. 1981;103(24):7367–8.

    Article  CAS  Google Scholar 

  5. Lagona J, Mukhopadhyay P, Chakrabarti S, Isaacs L. The cucurbit[n]uril family. Angew Chem Int Ed. 2005;44(31):4844–70.

    Article  CAS  Google Scholar 

  6. Masson E, Ling X, Joseph R, Kyeremeh-Mensah L, Lu X. Cucurbituril chemistry: a tale of supramolecular success. RSC Adv 2012. doi:10.1039/C1RA00768H.

  7. Walker S, Oun R, McInnes FJ, Wheate NJ. The potential of cucurbit[n]urils in drug delivery. Isr J Chem. 2011;51(5–6):616–24.

    Article  CAS  Google Scholar 

  8. Ghosh I, Nau WM. The strategic use of supramolecular pK a shifts to enhance the bioavailability of drugs. Adv Drug Deliv Rev. 2012. doi:10.1016/j.addr.2012.01.015.

  9. Shchepotina E, Pashkina E, Yakushenko E, Kozlov V. Cucurbiturils as containers for medicinal compounds. Nanotechnol Russ. 2011;6(11):773–9.

    Article  Google Scholar 

  10. Moghaddam S, Yang C, Rekharsky M, Ko YH, Kim K, Inoue Y, et al. New ultrahigh affinity host-guest complexes of cucurbit[7]uril with bicyclo[2.2.2]octane and adamantane guests: thermodynamic analysis and evaluation of M2 affinity calculations. J Am Chem Soc. 2011;133(10):3570–81.

    Article  CAS  Google Scholar 

  11. Saleh N, Koner AL, Nau WM. Activation and stabilization of drugs by supramolecular pK a shifts: drug-delivery applications tailored for cucurbiturils. Angew Chem Int Ed. 2008;47(29):5398–401.

    Article  CAS  Google Scholar 

  12. Lee JW, Samal S, Selvapalam N, Kim HJ, Kim K. Cucurbituril homologues and derivatives: new opportunities in supramolecular chemistry. Acc Chem Res. 2003;36(8):621–30.

    Article  CAS  Google Scholar 

  13. Kim J, Jung IS, Kim SY, Lee E, Kang JK, Sakamoto S, et al. New cucurbituril homologues: syntheses, isolation, characterization, and X-ray crystal structures of cucurbit[n]uril (n = 5, 7, and 8). J Am Chem Soc. 2000;122(3):540–1.

    Article  CAS  Google Scholar 

  14. Saleh N, Meetani M, Al-Kaabi L, Ghosh I, Nau WM. Effects of cucurbiturils on tropicamide and potential applications in ocular drug delivery. Supramol Chem. 2011;23(9):654–61.

    Article  CAS  Google Scholar 

  15. Koner AL, Ghosh I, Saleh N, Nau WM. Supramolecular encapsulation of benzimidazole-derived drugs by cucurbit[7]uril. Can J Chem. 2011;89(2):139–47.

    Article  CAS  Google Scholar 

  16. Uzunova VD, Cullinane C, Brix K, Nau WM, Day AI. Toxicity of cucurbit[7]uril and cucurbit[8]uril: an exploratory in vitro and in vivo study. Org Biomol Chem. 2010;8(9):2037–42.

    Article  CAS  Google Scholar 

  17. Jeon YJ, Kim SY, Ko YH, Sakamoto S, Yamaguchi K, Kim K. Novel molecular drug carrier: encapsulation of oxaliplatin in cucurbit[7]uril and its effects on stability and reactivity of the drug. Org Biomol Chem. 2005;3(11):2122–5.

    Article  CAS  Google Scholar 

  18. Hettiarachchi G, Nguyen D, Wu J, Lucas D, Ma D, Isaacs L, et al. Toxicology and drug delivery by cucurbit[n]uril type molecular containers. PLoS ONE. 2010;5(5):e10514.

    Article  Google Scholar 

  19. Bardelang D, Udachin KA, Leek DM, Margeson JC, Chan G, Ratcliffe CI, et al. Cucurbit[n]urils (n = 5–8): a comprehensive solid state study. Cryst Growth Des. 2011;11(12):5598–614.

    Article  CAS  Google Scholar 

  20. Isaacs L. The mechanism of cucurbituril formation. Isr J Chem. 2011;51(5–6):578–91.

    Article  CAS  Google Scholar 

  21. Kim E, Kim D, Jung H, Lee J, Paul S, Selvapalam N, et al. Facile, template-free synthesis of stimuli-responsive polymer nanocapsules for targeted drug delivery. Angew Chem Int Ed. 2010;49(26):4405–8.

    Article  CAS  Google Scholar 

  22. Horton J. Albendazole: a review of anthelmintic efficacy and safety in humans. Parasitology. 2000;121:S113–32.

    Article  Google Scholar 

  23. Hao D, Rizzo JD, Stringer S, Moore RV, Marty J, Dexter DL, et al. Preclinical antitumor activity and pharmacokinetics of methyl-2-benzimidazolecarbamate (FB642). Invest New Drugs. 2002;20(3):261–70.

    Article  CAS  Google Scholar 

  24. Pourgholami MH, Szwajcer M, Chin M, Liauw W, Seef J, Galettis P, et al. Phase I clinical trial to determine maximum tolerated dose of oral albendazole in patients with advanced cancer. Cancer Chemother Pharmacol. 2010;65(3):597–605.

    Article  CAS  Google Scholar 

  25. Zhao YJ, Buck DP, Morris DL, Pourgholami MH, Day AI, Collins JG. Solubilisation and cytotoxicity of albendazole encapsulated in cucurbit[n]uril. Org Biomol Chem. 2008;6(24):4509–15.

    Article  CAS  Google Scholar 

  26. Zhao YJ, Pourgholami MH, Morris DL, Collins JG, Day AI. Enhanced cytotoxicity of benzimidazole carbamate derivatives and solubilisation by encapsulation in cucurbit[n]uril. Org Biomol Chem. 2010;8(14):3328–37.

    Article  CAS  Google Scholar 

  27. Pranzo MB, Cruickshank D, Coruzzi M, Caira MR, Bettini R. Enantiotropically related albendazole polymorphs. J Pharm Sci. 2010;99(9):3731–42.

    CAS  Google Scholar 

  28. Castillo JA, Palomo-Canales J, Garcia JJ, Lastres JL, Bolas F, Torrado JJ. Preparation and characterization of albendazole β-cyclodextrin complexes. Drug Dev Ind Pharm. 1999;25(12):1241–8.

    Article  CAS  Google Scholar 

  29. Moriwaki C, Costa GL, Ferracini CN, de Moraes FF, Zanin GM, Pineda EAG, et al. Enhancement of solubility of albendazole by complexation with β-cyclodextrin. Braz J Chem Eng. 2008;25(2):255–67.

    Article  CAS  Google Scholar 

  30. Wheate NJ, Vora V, Anthony NG, McInnes FJ. Host-guest complexes of the antituberculosis drugs pyrazinamide and isoniazid with cucurbit[7]uril. J Incl Phenom Macro Chem. 2010;68(3–4):359–67.

    Article  CAS  Google Scholar 

  31. McInnes FJ, Anthony NG, Kennedy AR, Wheate NJ. Solid state stabilisation of the orally delivered drugs atenolol, glibenclamide, memantine and paracetamol through their complexation with cucurbit[7]uril. Org Biomol Chem. 2010;8(4):765–73.

    Article  CAS  Google Scholar 

  32. Kennedy AR, Florence AJ, McInnes FJ, Wheate NJ. A chemical preformulation study of a host-guest complex of cucurbit[7]uril and a multinuclear platinum agent for enhanced anticancer drug delivery. Dalton Trans. 2009;37:7695–700.

    Article  Google Scholar 

  33. Renu C, Poonam A, Sushma G, Singh JD. Complexation of nevirapine with β-cyclodextrins in the presence and absence of Tween 80: characterization, thermodynamic parameters, and permeability flux. J Therm Anal Calorim. 2011;105(3):1049–59.

    Article  Google Scholar 

  34. Soares-Sobrinho JL, Soares MFD, Rolim-Neto PJ, Torres-Labandeira JJ. Physicochemical study of solid-state benznidazole-cyclodextrin complexes. J Therm Anal Calorim. 2011;106(2):319–25.

    Article  CAS  Google Scholar 

  35. Giron D. Applications of thermal analysis and coupled techniques in pharmaceutical industry. J Therm Anal Calorim. 2002;68(2):335–57.

    Article  CAS  Google Scholar 

  36. Gad SC. Pharmaceutical manufacturing handbook: production and processes. Wiley; 2008

  37. Brunauer S, Emmett PH, Teller E. Adsorption of gases in multimolecular layers. J Am Chem Soc. 1938;60:309–19.

    Article  CAS  Google Scholar 

  38. Lim S, Kim H, Selvapalam N, Kim KJ, Cho SJ, Seo G, et al. Cucurbit[6]uril: Organic molecular porous material with permanent porosity, exceptional stability, and acetylene sorption properties. Angew Chem Int Ed. 2008;47(18):3352–5.

    Article  CAS  Google Scholar 

  39. Germain P, Letoffe JM, Merlin MP, Buschmann HJ. Thermal behaviour of hydrated and anhydrous cucurbituril - A DSC, TG and calorimetric study in temperature range from 100 to 800 K. Thermochim Acta. 1998;315(2):87–92.

    Article  CAS  Google Scholar 

  40. Bardelang D, Udachin KA, Leek DM, Ripmeester JA. Highly symmetric columnar channels in metal-free cucurbit[n]uril hydrate crystals (n = 6, 8). CrystEngComm. 2007;9(11):973–5.

    Article  CAS  Google Scholar 

  41. Bardelang D, Udachin KA, Anedda R, Moudrakovski I, Leek DM, Ripmeester JA, et al. Single-crystal to single-crystal phase transition of cucurbit[5]uril hydrochloride hydrates: large water-filled channels transforming to layers of unusual stability. Chem Commun. 2008;40:4927–9.

    Article  Google Scholar 

  42. Nau WM, Florea M, Assaf KI. Deep inside cucurbiturils: physical properties and volume of their inner cavity determine the hydrophobic driving forces for host-guest complexation. Isr J Chem. 2011;51:559.

    Article  CAS  Google Scholar 

  43. Alanazi FK, El-Badry M, Mahtous OA, Al-Sarra IA. Improvement of albendazole dissolution by preparing microparticles using spray-drying technique. Allemand. 2007;75(2):63–79.

    CAS  Google Scholar 

  44. Hwang I, Jeon WS, Kim HJ, Kim D, Kim H, Selvapalam N, et al. Cucurbit[7]uril: a simple macrocyclic, pH-triggered hydrogelator exhibiting guest-induced stimuli-responsive behavior. Angew Chem Int Ed. 2007;46(1–2):210–3.

    Article  CAS  Google Scholar 

  45. Huang XL, Tan YB, Zhou QF, Wang YX. Fabrication of cucurbit[6]uril mediated alginate physical hydrogel beads and their application as a drug carriers. E Polym. 2008;095.

  46. Barbato F, La Rotonda MI, Miro A, Morrica P, Quaglia F. Inclusion complexation of carbaryl and β-cyclodextrin in solution and in the solid state. J Incl Phenom Macro Chem. 2000;38(1–4):423–33.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

N.S. would like to acknowledge Research Affairs at the United Arab Emirates University for their financial support of this project under grant number NRF/21S041.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Na’il Saleh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saleh, N., Khaleel, A., Al-Dmour, H. et al. Host–guest complexes of cucurbit[7]uril with albendazole in solid state. J Therm Anal Calorim 111, 385–392 (2013). https://doi.org/10.1007/s10973-012-2376-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2376-5

Keywords

Navigation