Skip to main content
Log in

Cyclodextrin-based polyrotaxanes

  • Review Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

In the paper cyclodextrin-based (CD) polyrotaxanes are presented in the aspect of their syntheses and properties allowing various applications. The text consists of four parts, which describe CD-based polyrotaxanes with threads containing poly(ethylene oxide), poly (4,4′-diphenylenevinylene), polyfluorene and other chains. Conclusion shows new trends connected with this theme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harada, A., Takashima, Y., Yamaguchi, H.: Cyclodextrin-based supramolecular polymers. Chem. Soc. Rev. 38(4), 875–882 (2009)

    Article  CAS  Google Scholar 

  2. Frampton, M.J., Anderson, H.L.: Insulated molecular wires. Angew. Chem. Int. Ed. 46(7), 1028–1064 (2007)

    Article  CAS  Google Scholar 

  3. Wenz, G., Han, B.-H., Mueller, A.: Cyclodextrin rotaxanes and polyrotaxanes. Chem. Rev. 106(3), 782–817 (2006)

    Article  CAS  Google Scholar 

  4. Inoue, Y., Ye, L., Ishihara, K., Yui, N.: Preparation and surface properties of polyrotaxane-containing tri-block copolymers as a design for dynamic biomaterials. Colloids Surf. B 89, 223–227 (2012)

    Article  CAS  Google Scholar 

  5. Brovelli, S., Cacialli, F.: Optical and electroluminescent properties of conjugated polyrotaxanes. Funct. Supramol. Archit. 2, 919–960 (2011)

    CAS  Google Scholar 

  6. Hyun, H., Yui, N.: Ligand accessibility to receptor binding sites enhanced by movable polyrotaxanes. Macromol. Biosci. 11(6), 765–771 (2011)

    Article  CAS  Google Scholar 

  7. Oddy, F.E., Brovelli, S., Stone, M., Klotz, E.J.F., Cacialli, F., Anderson, H.L.: Influence of cyclodextrin size on fluorescence quenching in conjugated polyrotaxanes by methyl viologen in aqueous solution. J. Mater. Chem. 19(18), 2846–2852 (2009)

    Article  CAS  Google Scholar 

  8. Wang, J., Wang, P.-J., Ye, L., Zhang, A.-Y., Feng, Z.-G.: Residing states of β-cyclodextrins in solid-state polyrotaxanes comprising pluronic F127 and PNIPAAm. Polymer 52(23), 5362–5368 (2011)

    Article  CAS  Google Scholar 

  9. Hatakeyama, H., Akita, H., Harashima, H.: A multifunctional envelope type nano device (MEND) for gene delivery to tumours based on the EPR effect: a strategy for overcoming the PEG dilemma. Adv. Drug Deliv. 63(3), 152–160 (2011)

    Article  CAS  Google Scholar 

  10. Zhu, L., Lu, M., Zhang, Q., Qu, D., Tian, H.: Construction of polypseudorotaxane from low-molecular weight monomers via dual noncovalent interactions. Macromolecules 44(11), 4092–4097 (2011)

    Article  CAS  Google Scholar 

  11. Shi, J., Chen, Y., Wang, Q., Liu, Y.: Construction and efficient radical cation stabilization of cyclodextrin/aniline polypseudorotaxane and its conjugate with carbon nanotubes. Adv. Mater. 22(23), 2575–2578 (2010)

    Article  CAS  Google Scholar 

  12. Noguerias-Nieto, L., Sobarzo-Sánchez, E., Gómez-Amoza, J.L., Otero-Espinar, J.: Competitive displacement of drugs from cyclodextrin inclusion complex by polypseudorotaxane formation with poloxamer: implications in drug solubilization and delivery. Eur. J. Pharm. Biopharm. 80, 585–595 (2012)

    Article  Google Scholar 

  13. Otero-Espinar, F.J., Torres-Labandeira, J.J., Alvarez-Lorenzo, C., Blanco-Mendez, J.: Cyclodextrin in drug delivery systems. J. Drug Deliv. Sci. Technol. 20(4), 289–301 (2010)

    CAS  Google Scholar 

  14. Motoyama, K., Hayashida, K., Higashi, T., Arima, H.: Polypseudorotaxanes of pegylated α-cyclodextrin/polyamidoamine dendrimer conjugate with cyclodextrins as a sustained release system for DNA. Bioorg. Med. Chem. 20(4), 1425–1433 (2012)

    Article  CAS  Google Scholar 

  15. Motoyama, K., Hayashida, K., Arima, H.: Potential use of polypseudorotaxanes of pegylated polyamidoamine dendrimer with cyclodextrins as novel sustained release systems for DNA. Chem. Pharm. Bull. 59(4), 476–479 (2011)

    Article  CAS  Google Scholar 

  16. Girek, T., Goszczyński, T., Girek, B., Ciesielski, W., Boratyński, J., Rychter, P.: β-Cyclodextrin/protein conjugates as a innovative drug systems: synthesis and MS investigation. J. Incl. Phenom. Macrocycl. Chem. doi:10.1007/s10847-012-0132-x

  17. Girek, T.: Cyclodextrin-based rotaxanes. J. Incl. Phenom. Macrocycl. Chem. 74(1–4), 1–21 (2012)

    Article  CAS  Google Scholar 

  18. Girek, T., Ciesielski, W.: Polymerization of β-cyclodextrin with maleic anhydride along with thermogravimetric study of polymers. J. Incl. Phenom. Macrocycl. Chem. 69(3–4), 445–451 (2011)

    Article  CAS  Google Scholar 

  19. Ciesielski, W., Girek, T.: Study of thermal stability of β-cyclodextrin/metal complexes in the aspect of their future applications. J. Incl. Phenom. Macrocycl. Chem. 69(3–4), 461–467 (2011)

    Article  CAS  Google Scholar 

  20. Kozlowski, C.A., Walkowiak, W., Girek, T.: Modified cyclodextrin polymers as selective ion carriers for Pb(II) separation across plasticized membranes. J. Membr. Sci. 310(1–2), 312–320 (2008)

    Article  CAS  Google Scholar 

  21. Musiol, R., Girek, T.: Inclusion-dependent mechanism of modification of cyclodextrins with heterocycles. Cent. Eur. J. Chem. 3(4), 742–746 (2005)

    Article  CAS  Google Scholar 

  22. Yang, Ch., Li, J.: Thermorespnsive behavior of cationic polyrotaxane composed of multiple pentaethylenehexamine-grafted α-cyclodextrin threated on poly(propylene oxide)-poly(ethylene oxide)-poly(propylene oxide) triblock copolymer. J. Phys. Chem. B. 113(3), 682–690 (2009)

    Article  CAS  Google Scholar 

  23. Przybylski, C., Jarroux, N.: Analysis of a polydisperse polyrotaxane based on poly(ethylene oxide) and α-cyclodextrins using nanoelectrospray and LTQ-orbitrap. Anal. Chem. 83(22), 8460–8467 (2011)

    Article  CAS  Google Scholar 

  24. Imran, A.-B., Seki, T., Kataoka, T., Kidowaki, M., Ito, K., Takeoka, Y.: Fabrication of mechanically improved hydrogels using a movable cross-linker based on vinyl modified polyrotaxane. Chem. Commun. 41, 5227–5229 (2008)

    Article  Google Scholar 

  25. Sun, H., Han, J., Gao, C.: High yield production of high molecular weight poly(ethylene glycol)/α-cyclodextrin polyrotaxanes by aqueous one-pot approach. Polymer 53(14), 2884–2889 (2012)

    Article  CAS  Google Scholar 

  26. Wu, J.Y., He, H.K., Gao, C.: β-Cyclodextrin-capped polyrotaxanes: one-pot facile synthesis via click chemistry and use as templates for platinum nanowires. Macromolecules 43(5), 2252–2260 (2010)

    Article  CAS  Google Scholar 

  27. Nakazano, K., Takashima, T., Arai, T., Koyama, Y., Takata, T.: High-yield one-pot synthesis of permethylated α-cyclodextrin-based polyrotaxane in hydrocarbon solvent through an efficient heterogeneous reaction. Macromolecules 43(2), 691–696 (2010)

    Article  Google Scholar 

  28. Arai, T., Hayashi, M., Takagi, N., Takata, T.: One-pot synthesis of native and permethylated α-cyclodextrin-containing polyrotaxanes in water. Macromolecules 42(6), 1881–1887 (2009)

    Article  CAS  Google Scholar 

  29. Soliman, M., Allen, S., Davies, M.C., Alexander, C.: Responsive polyelectrolyte complexes for triggered release of nucleic acid therapeutics. Chem. Commun. 46, 5421–5433 (2010)

    Article  CAS  Google Scholar 

  30. Davis, M.E., Zuckerman, J.E., Choi, C.H.J., Seligson, D., Tolcher, A., Alabi, C.A., Yen, Y., Heidel, J.D., Ribas, A.: Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464(7291), 1067–1070 (2010)

    Article  CAS  Google Scholar 

  31. Thiele, C., Auerbach, D., Jung, G., Wenz, G.: Inclusion of chemotherapeutic agents in substituted β-cyclodextrin derivatives. J. Incl. Phenom. Macrocycl. Chem. 69(3–4), 303–307 (2011)

    Article  CAS  Google Scholar 

  32. Thiele, C., Auerbach, D., Jung, G., Qiong, L., Schneider, M., Wenz, G.: Nanoparticles of anionic starch and cationic cyclodextrin derivatives for the targeted delivery of drugs. Polym. Chem. 2(1), 209–215 (2010)

    Article  Google Scholar 

  33. Wenz, G.: Cyclodextrin polyrotaxanes assembled from a molecular construction kit in aqueous solution. J. Polym. Sci. Part A Polym. Chem. 47(23), 6333–6341 (2009)

    Article  CAS  Google Scholar 

  34. Alzabut, T., Keil, M., Ellis, J., Alexander, C., Wenz, G.: Transfection of luciferase DNA into various cells by cationic cyclodextrin polyrotaxanes derived from ionene-11. J. Mater. Chem. 22(17), 8558–8565 (2012)

    Article  Google Scholar 

  35. Ooya, T., Choi, H.S., Yamashita, A., Yui, N., Sugaya, Y., Kano, A., Maruyama, A., Akita, H., Ito, R., Kogure, K., Harashima, J.: Biocleavable polyrotaxane-plasmid DNA polyplex for enhanced gene delivery. J. Am. Chem. Soc. 128(12), 3852–3853 (2006)

    Article  CAS  Google Scholar 

  36. Latini, G., Parrot, L.-J., Brovelli, S., Frampton, M.J., Anderson, H.L., Cacialli, F.: Cyclodextrin-threaded conjugated polyrotaxanes for organic electronics: the influence of the counter cations. Adv. Funct. Mater. 18(16), 2419–2427 (2008)

    Article  CAS  Google Scholar 

  37. Taniguchi, M., Nojima, Y., Yokota, K., Terao, J., Sato, K., Kambe, N., Kawai, T.: J. Am. Chem. Soc. 128(47), 15062–15063 (2006)

    Article  CAS  Google Scholar 

  38. Brovelli, S., Guan, H., Winroth, G., Fenwick, O., Di Stasio, F., Daik, R., Feast, W.J., Meinardi, F., Cacialli, F.: White luminescence from single-layer devices of nonresonant polymer blends. Appl. Phys. Lett. 96(21), 213301 (2010)

    Article  Google Scholar 

  39. Brovelli, S., Meinardi, F., Winroth, G., Fenwick, O., Sforazzini, G., Frampton, M.J., Zalewski, L., Levitt, J.A., Marinello, F., Schiavuta, P., Suhling, K., Anderson, H.L., Cacialli, F.: White electroluminescence by supramolecular control of energy transfer in blends of organic-soluble encapsulated polyfluorenes. Adv. Mater. 20(2), 272–280 (2010)

    CAS  Google Scholar 

  40. Sugiyasu, K., Honsho, Y., Harrison, R.M., Sato, A., Yasuda, T., Seki, S., Takeuchi, M.: A self-threading polythiophene: defect-free insulated molecular wires endowed with long effective conjugation length. J. Am. Chem. Soc. 132(42), 14754–14756 (2010)

    Article  CAS  Google Scholar 

  41. Chen, Y.J., Wu, W., Pu, W.G., He, S.X.: Preparation and characterization of conjugated polypseudorotaxane poly(pyrrole/α-cyclodextrin). Int. J. Polym. Anal. Charact. 15(1), 43–53 (2010)

    Article  CAS  Google Scholar 

  42. Grigiras, M., Stafie, L.: Electrically insulated molecular wires. Supramol. Chem. 22(4), 237–248 (2010)

    Article  Google Scholar 

  43. Zalewski, L., Wykes, M., Brovelli, S., Bonini, M., Breiner, T., Kastler, M., Dotz, F., Beljonne, D., Anderson, H.L., Cacialli, F., Samori, P.: A conjugated thiophene-based rotaxane: synthesis, spectroscopy, and modeling. Chem. Eur. J. 16(13), 3933–3941 (2010)

    Article  CAS  Google Scholar 

  44. Farcas, A., Ghosh, I., Grigoras, V.C., Stoica, I., Peptu, C., Nau, W.M.: Effect of rotaxane formation on the photophysical, morphological, and adhesion properties of poly[2,7-(9,9-dioctylfluorene)-alt-(5,5′-bithiophene)] main-chain polyrotaxanes. Macromol. Chem. Phys. 212(10), 1022–1031 (2011)

    Article  CAS  Google Scholar 

  45. Farcas, A., Stoica, I., Stefanache, A., Peptu, C., Farcas, F., Marangoci, N., Sacarescu, L., Harabagiu, V., Guégan, P.: Surface properties of conjugates main-chain polyrotaxanes. Chem. Phys. Lett. 508(1–3), 111–116 (2011)

    Article  CAS  Google Scholar 

  46. Michels, J.J., O’Connell, M.J., Taylor, P.N., Wilson, J.S., Cacialli, F., Anderson, H.L.: Synthesis of conjugated polyrotaxanes. Chem.A Eur. J. 9(24), 6167–6176 (2003)

    Article  CAS  Google Scholar 

  47. Frampton, M.J., Sforazzini, G., Brovelli, S., Latini, G., Townsend, E., Wiliams, C.C., Charas, A., Zalewski, L., Kaka, N.S., Sirish, M., Parrott, L.J., Wilson, J.S., Cacialli, F., Anderson, H.L.: Synthesis and optoelectronc properties of nonpolar polyrotaxane insulated molecular wires with high solubility in organic solvents. Adv. Funct. Mater. 18(21), 3367–3376 (2008)

    Article  CAS  Google Scholar 

  48. Miyawaki, A., Miyauchi, M., Takashima, Y., Yamaguchi, H., Harada, A.: Formation of supramolecular isomers; poly[2]rotaxane and supramolecular assembly. Chem. Commun. 4, 456–458 (2008)

    Article  Google Scholar 

  49. Farcas, A., Jarroux, N., Ghosh, I., Guégan, P., Nau, W.M., Harabagiu, V.: Polyrotaxanes of pyrene-triazole conjugated azomethine and α-cyclodextrin with high fluorescence properties. Macromol. Chem. Phys. 210(17), 1440–1449 (2009)

    Article  CAS  Google Scholar 

  50. Terao, J., Tsuda, S., Tanaka, Y., Okoshi, K., Fujihara, T., Tsuji, Y., Kambe, N.: Synthesis of organic-soluble conjugated polyrotaxanes by polymerization of linked rotaxanes. J. Am. Chem. Soc. 131(44), 16004–16005 (2009)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Girek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Girek, T. Cyclodextrin-based polyrotaxanes. J Incl Phenom Macrocycl Chem 76, 237–252 (2013). https://doi.org/10.1007/s10847-012-0253-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-012-0253-2

Keywords

Navigation