Skip to main content
Log in

Study of thermal stability of β-cyclodextrin/metal complexes in the aspect of their future applications

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

The interaction of cyclodextrins with transition metal ions, mostly due to the presence of similar complexes in biological systems. Metal polysaccharide chemistry plays a crucial role in crosslinking of many biomolecules, and the formed polysaccharide/metal complexes are promising for pharmaceutical applications, as well as for heavy metal collectors and material for production of various substances i.e. drilling muds. In the study of β-CD/metal complexes made in order to explain the influence of Co(NO3)2, Cu(NO3)2, Ni(NO3)2, Co(CH3COO)2, Cu(CH3COO)2, Mn(CH3COO)2, Ni(CH3COO)2, CoCl2, CuCl2, FeCl3, MnCl2, NiCl2, CoSO4, Cr2(SO4)3, CuSO4, Fe2(SO4)3 and MnSO4 on thermal decomposition of β-cyclodextrin. The theoretical AM1 (Austin Model 1) studies confirm the experimental results. Moreover the studies show that β-cyclodextrin can be a convenient model of starch, which may be useful for examination of starch–metal interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bandwar, R., Rao, Ch.: Transition-metal-saccharide chemistry: synthesis and characterisation of d-galactose, d-fructose, d-glucose, d-xylose, d-ribose and maltose complexes of Mn(II). Carbohydr. Res. 287, 157–168 (1996)

    Article  CAS  Google Scholar 

  2. Bandwar, R., Rao, Ch.: Transition-metal saccharide chemistry: synthesis and characterization of d-glucose, d-fructose, d-galactose, d-xylose, d-ribose, and maltose complexes of Ni(II). Carbohydr. Res. 297, 341–346 (1996)

    Article  Google Scholar 

  3. Bandwar, R., Sastry, M., Kadam, R., Rao, Ch.: Transition-metal saccharide chemistry: synthesis and characterization of d-glucose, d-fructose, d-galactose, d-xylose, d-ribose, and maltose complexes of Co(II). Carbohydr. Res. 297, 333–339 (1997)

    Article  CAS  Google Scholar 

  4. Gyurcsik, B., Nagy, L.: Carbohydrates as ligands: coordination equilibria and structure of metal complexes. Coord. Chem. Rev. 203, 81–148 (2000)

    Article  CAS  Google Scholar 

  5. Norkus, E., Vaskelis, A., Vaitkus, R.: On Cu(II) complex formation with saccharose and glycerol in alkaline solution. J. Inorg. Biochem. 60, 299–302 (1995)

    Article  CAS  Google Scholar 

  6. Burger, K., Illes, J., Gyurcsik, B., Gazdag, M., Forrai, E., Dekany, I., Mihalyfi, K.: Metal ion coordination of macromolecular bioligands: formation of zinc(II) complex of hyaluronic acid. Carbohydr. Res. 332, 197–207 (2001)

    Article  CAS  Google Scholar 

  7. Ciesielski, W.: Complexes of anionic polysaccharides with metal salts. Part II: Kappa carrageenan. J. Food Agric. Environ. 2(1), 17–25 (2004)

    CAS  Google Scholar 

  8. Ciesielski, W., Koziol, J.J., Tomasik, P.: Complexes of amaranthus starch with selected metal salts and their thermolysis. Thermochim. Acta 403, 161–171 (2003)

    Article  CAS  Google Scholar 

  9. Ciesielski, W., Tomasik, P., Lii, C.Y., Yen, M.T.: Interactions of starch with salts of metals from the transition groups. Carbohydr. Polym. 51, 47–56 (2003)

    Article  CAS  Google Scholar 

  10. Lii, C.Y., Tomasik, P., Wei-Ling, H., Lai, V.M.-F.: Revised look at starch interactions with electrolyte Interactions with salts of metals from the first non-transition group. Food Hydrocoll. 16, 35–45 (2002)

    Article  CAS  Google Scholar 

  11. Lii, C.Y., Tomasik, P., Yen, M.T., Lai, V.M.-F.: Re-examination of the interactions between starch and salts of metals from the non-transition groups. Int. J. Food Sci. Technol. 36, 321–330 (2001)

    Article  Google Scholar 

  12. Lugovaya, Z., Tolmachev, V., Illenko, I.: Study of the optical rotation of dextran solutions containing metal ions. Vysokomol. Soedin. 23, 434 (1981)

    CAS  Google Scholar 

  13. Levchik, S., Scheirs, J., Camino, G., Tumiatti, W., Avidano, M.: Depolymerization processes in the thermal degradation of cellulosic paper insulation in electrical transformers. Polym. Degrad. Stab. 61, 507–511 (1998)

    Article  CAS  Google Scholar 

  14. Scheirs, J., Camino, G., Tumiatti, W.: Overview of water evolution during the thermal degradation of cellulose. Eur. Polym. J. 37, 933–942 (2001)

    Article  CAS  Google Scholar 

  15. Scheirs, J., Camino, G., Avidano, M., Tumiatti, W.: Origin of furanic compounds in thermal degradation of cellulosic insulating paper. J. Appl. Polym. Sci. 69, 2541–2547 (1998)

    Article  CAS  Google Scholar 

  16. Szafran, B., Pawlaczyk, J.: Interaction between sulfaproxyline and b-cyclodextrin in the solution and solid states. J. Incl. Phenom. Macrocycl. Chem. 34, 133–141 (1999)

    Article  Google Scholar 

  17. Hladon, T., Pawlaczyk, J., Szafran, B.: Stability of ibuprofen on its inclusion complex with b-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 36, 1–8 (2000)

    Article  CAS  Google Scholar 

  18. Morin, N., Crini, G., Cosentino, C., Millet, J., Vebrel, J., Rouland, J.: Formation of two particular structures between β-cyclodextrin and bifonazole: β-cyclodextrin–bifonazole and (β-cyclodextrin)i–bifonazole (where 2\i\3). J. Chem. Soc. Perkin Trans. 2, 2647–2651 (1999)

    Google Scholar 

  19. Breslow, R., Bovy, P., Hersh, C.L.: Reversing the selectivity of cyclodextrin bisimidazole ribonuclease mimics by changing the catalyst geometry. J. Am. Chem. Soc. 102(6), 2115–2117 (1980)

    Article  CAS  Google Scholar 

  20. Norkus, E.: Metal ion complexes with native cyclodextrins. An overview. J. Incl. Phenom. Macrocycl. Chem.65, 237–248 (2009)

    Google Scholar 

  21. Cambridge Data Base (1974)

  22. Lee, C., Yang, W., Parr, R.G.: Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988)

    Article  CAS  Google Scholar 

  23. Gauss, d. 4.1 in CAChe 7.5.0.85 by FUJITSU

  24. Frisch, M.J., et al.: User’s Reference Guide GAUSSIAN 98. Gaussian, Inc, Pittsburgh (1998)

    Google Scholar 

  25. Yilmaz, V.T., Karadag, A., Icbuda, K.H.: Thermal decomposition of ß-cyclodextrin inclusion complexes of ferrocene and their derivatives. Thermochim. Acta 261, 107 (1995)

    Article  CAS  Google Scholar 

  26. Merck Index (1989)

  27. Tomasik, P., Schilling, C.: Chemical modification of starch. Adv. Carbohydr. Chem. Biochem. 59, 176–403 (2004)

    Google Scholar 

  28. Pilbrow, J.R.: Transition Ion Electron Paramagnetic Resonance. Clarendon Press, Oxford (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech Ciesielski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ciesielski, W., Girek, T. Study of thermal stability of β-cyclodextrin/metal complexes in the aspect of their future applications. J Incl Phenom Macrocycl Chem 69, 461–467 (2011). https://doi.org/10.1007/s10847-010-9803-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-010-9803-7

Keywords

Navigation