Skip to main content
Log in

Structural characterization and diffusional analysis of the inclusion complexes of fluoroadamantane with β-cyclodextrin and its derivatives studied via 1H, 13C and 19F NMR spectroscopy

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

This research conducts method development to study the diffusions of β-cyclodextrin and its derivatives (collectively called β-CDs) in biological systems. We proposed using fluoroadamantane (FA) β-CD inclusion complexes as a model system to study the diffusion of β-CDs by using 19F self-diffusion NMR technique. The use of 19F signal over 1H signal arises from the advantage of being able to avoid the interference of 1H signals from biological molecules and water. Another benefit of using FA is that the 19F relaxation times are not significantly influenced by viscous biological solutions due to the tumbling nature of FA in β-CD cavities. To synthesize the FA β-CD inclusion complexes, a FA THF (tetrahydrofuran) solution and a β-CD water solution were mixed together followed by lyophilization. The formation of the inclusion complexes in water were determined using HMQC and ROESY NMR experiments with the assistance of molecular modeling. To assess the method, both 1H and 19F diffusion NMR were carried out to study the diffusions of four typical FA β-CD inclusion complexes. The results of this study illustrate that the diffusion coefficients obtained from the FA 19F signal truly measure those of the β-CDs’ diffusion coefficients in water. Thus, the proposed technique using our model system is valid to be used to study the diffusions of β-CDs in biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Challa, R., Ahuja, A., Ali, J., Khar, R.K.: Cyclodextrins in drug delivery: an updated review. AAPS PharmSciTech 6, E329–E357 (2005)

    Article  Google Scholar 

  2. Loftsson, T., Duchene, D.: Cyclodextrins and their pharmaceutical applications. Int. J. Pharm. 329, 1–11 (2007)

    Article  CAS  Google Scholar 

  3. Loftsson, T., Brewester, M.: Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J. Pharm. Sci. 85, 1017–1025 (1996)

    Article  CAS  Google Scholar 

  4. Davis, M.E., Brewster, M.E.: DISCOVERYCyclodextrin-based pharmaceutics: past, present and future. Nat. Rev. Drug Discov. 3, 1023–1035 (2004)

    Google Scholar 

  5. Fenyvesi, E.: Cyclodextrin polymers in the pharmaceutical industry. J. Incl. Phenom. 6, 537–545 (1988)

    Article  CAS  Google Scholar 

  6. Hirayama, F., Uekama, K.: Cyclodextrin-based controlled drug release system. Adv. Drug Deliv. Rev. 36, 125–141 (1999)

    Article  CAS  Google Scholar 

  7. Mocanu, G., Vizitiu, D., Carpov, A.: Cyclodextrin polymers. J. Bioact. Compat. Polym. 16, 31542 (2001)

    Article  Google Scholar 

  8. Loftsson, T., Brewster, M.E., Másson, M.: Role of cyclodextrins in improving oral drug delivery. Am. J. Drug. Deliv. 2, 261–275 (2004)

    Article  CAS  Google Scholar 

  9. Loftsson, T., Jarho, P., Másson, M., Järvinen, T.: Cyclodextrins in drug delivery. Expert Opin. Drug Deliv. 2, 335–351 (2005)

    Article  CAS  Google Scholar 

  10. Cao, X., Bansil, R., Gantz, D., Moore, E.W., Niu, N., Afdhal, N.: Diffusion behavior of lipid vesicles in entangled polymer solutions. Biophys. J. 73, 1932–1939 (1997)

    Article  CAS  Google Scholar 

  11. Afdhal, N.H., Cao, X., Bansil, R., Hong, Z., Thompson, C., Brown, B., Wolf, D.: Interaction of mucin with cholesterol enriched vesicles: role of mucin structural domains. Biomacromolecules 5, 269–275 (2004)

    Article  CAS  Google Scholar 

  12. Larhed, A.W., Artursson, P., Grasjo, J., Bjork, E.: Diffusion of drugs in native and purified gastrointestinal mucus. J. Pharm. Sci. 86, 660–665 (1997)

    Article  CAS  Google Scholar 

  13. Cheng, J., Khin, K.T., Jensen, G.S., Liu, A., Davis, M.E.: Synthesis of linear, b-cyclodextrin-based polymers and their camptothecin conjugates. Bioconjug. Chem. 14, 1007–1017 (2003)

    Article  CAS  Google Scholar 

  14. Cheng, J., Khin, K.T., Davis, M.E.: Antitumor activity of b-cyclodextrin polymer-camptothecin conjugates. Mol. Pharm. 1, 183–193 (2004)

    Article  CAS  Google Scholar 

  15. Cromwell, W., Bystrom, K., Eftink, M.: Cyclodextrin adamantanecarboylate inclusion complexes-studies of the variation in cavity size. J. Phys. Chem.-US 89, 326–332 (1985)

    Article  CAS  Google Scholar 

  16. Fukami, T., Furuishi, T., Suzuki, T., Hidaka, S., Ueda, H., Tomono, K.: Improvement in solubility of poorly water soluble drug by cogrinding with highly branched cyclic dextrin. J. Incl. Phenom. Macrocycl. Chem. 56, 61–64 (2006)

    Article  CAS  Google Scholar 

  17. Wongmekiat, A., Yoshimatsu, S., Tozuka, Y., Moribe, K., Yamamoto, K.: Investigation of drug nanoparticle formation by co-grinding with cyclodextrins: studies for indomethacin, furosemide and naproxen. J. Incl. Phenom. Macrocycl. Chem. 56, 29–32 (2006)

    Article  CAS  Google Scholar 

  18. Yang, L.-J., Yang, B., Chen, W., Huang, R., Yan, S.-J., Lin, J.: Host-guest system of nimbin and β-cyclodextrin or its derivatives: preparation, characterization, inclusion mode, and solubilization. J. Agric. Food Chem. 58, 8545–8552 (2010)

    Article  CAS  Google Scholar 

  19. Müller, L.: Sensitivity enhanced detection of weak nuclei using heteronuclear multiple quantum coherence. J. Am. Chem. Soc. 101, 4481–4484 (1979)

    Article  Google Scholar 

  20. Bax, A., Griffey, R.H., Hawkins, B.L.: Correlation of proton and nitrogen-15 chemical shifts by multiple quantum NMR. J. Magn. Reson. 55, 301–315 (1983)

    CAS  Google Scholar 

  21. Reynolds, W.F., Enriquez, R.G.: Gradient-selected versus phase-cycled HMBC and HSQC: pros and cons. Magn. Reson. Chem. 39, 531–538 (2001)

    Article  CAS  Google Scholar 

  22. Bothner-By, A.A., Stephens, R.L., Lee, J.-M., Warren, C.D., Jeanloz, R.W.: Gradient-selected versus phase-cycled HMBC and HSQC: pros and cons. J. Am. Chem. Soc. 106, 811–813 (1984)

    Article  CAS  Google Scholar 

  23. Bax, A., Davis, D.G.: Practical aspects of two-dimensional transverse NOE spectroscopy. J. Magn. Reson. 63, 207–213 (1985)

    CAS  Google Scholar 

  24. Hwang, T.L., Shaka, A.J.: Cross relaxation without TOCSY: transverse rotating-frame Overhauser effect spectroscopy. J. Am. Chem. Soc. 114, 3157–3159 (1992)

    Article  CAS  Google Scholar 

  25. Hwang, T.L., Shaka, A.J.: Multiple-pulse mixing sequences that selectively enhance chemical exchange or cross-relaxation peaks in high-resolution NMR spectra. J. Magn. Reson. 135, 280–287 (1998)

    Article  CAS  Google Scholar 

  26. Price, W.S.: Pulsed-field gradient nuclear magnetic resonance as a tool for studying translational diffusion: part 1. Basic Theory Concepts Magn. Reson. 9, 299–336 (1997)

    Google Scholar 

  27. Johnson, C.S. Jr.: Diffusion ordered nuclear magnetic resonance spectroscopy: principles and applications. Prog. Nucl. Magn. Reson. Spectrosc. 34, 203–256 (1999)

    Google Scholar 

  28. Tanner, J.E.: Use of the stimulated echo in NMR diffusion studies. J. Chem. Phys. 52, 2523–2526 (1970)

    Article  CAS  Google Scholar 

  29. Hamdi, H., Abderrahim., R., Meganem, F.: Spectroscopic studies of inclusion complex of -cyclodextrin and benzidine diammonium dipicrate. Spectrochim. Acta Part A 75, 32–36 (2010)

    Google Scholar 

  30. Nowaknowski, M., Dlugosz, M., Taraszewska, J., Wojcik, J.: Complexation of aminoglutethimide with native and modified cyclodextrin. J. Phys. Org. Chem. 22, 948–953 (2009)

    Article  Google Scholar 

  31. Xiao, Y.-M., Wang, J., Wang, M.-A., Liu, Ji.-p., Yuan, H.-Z., Qin, Z.-H.: Study on the inclusion complexes of Flumorph and Dimethomorph with b-cyclodextrin to improve fungicide formation. J. Chem. Soc. Pak. 32, 363–369 (2010)

  32. Upadhyay, S.K., Ali, S.M.: Solution structure of loperamide and β-cyclodextrin inclusion complexes using NMR spectroscopy. J. Chem. Sci. 121, 521–527 (2009)

    Google Scholar 

Download references

Acknowledgments

This work was supported by NSF grants of 1011836 and 0619147.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Ba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, X., Mathias, E.V., Nguyen, K.T.H. et al. Structural characterization and diffusional analysis of the inclusion complexes of fluoroadamantane with β-cyclodextrin and its derivatives studied via 1H, 13C and 19F NMR spectroscopy. J Incl Phenom Macrocycl Chem 76, 427–441 (2013). https://doi.org/10.1007/s10847-012-0214-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-012-0214-9

Keywords

Navigation