Skip to main content
Log in

Molecular inclusion of PCB126 by beta-cyclodextrin: a combined molecular dynamics simulation and quantum chemical study

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

The effective enrichment and identification of lowly concentrated polychlorinated biphenyls (PCBs) in the environment is attracting much research attention due to human health concerns raised from their emissions. Cyclodextrins (CDs) are known to be capable to form inclusion complexes with a variety of organic molecules. The purpose of this study is to provide theoretical evidences whether CDs can form energetically stable inclusion complexes with PCBs through a host–guest interaction, and if so, whether infrared and Raman techniques are suitable for the detection of CD-modified PCBs. Focusing on a representative PCB molecule, 3,3′,4,4′,5-pentachlorobiphenyl (PCB126), we studied its molecular inclusion by β-CD (BCD) by performing molecular dynamics simulations and density functional theory calculations. Calculated results show that PCB126 and BCD preferentially form the stable 1:1 inclusion complex. The calculated IR spectra of the 1:1 inclusion complexes mainly present the spectra features of BCD and give only a slight indication for bands of the guest molecule. In contrast, the characteristic vibration modes of the guest molecule are remarkably prominent in the Raman spectra of the inclusion complexes. Based on the present results, we propose that BCD can potentially serve as a candidate for including PCB126 to form the stable 1:1 host–guest complex, and that Raman spectroscopy technology is expected to be suitable for the identification of the CD-modified PCBs, whereas IR spectroscopy is not feasible for such an application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Van den Berg, M., Birnbaum, L., Bosveld, A.T.C., Brunstrom, B., Cook, P., Feeley, M., Giesy, J.P., Hanberg, A., Hasegawa, R., Kennedy, S.W., Kubiak, T., Larsen, J.C., van Leeuwen, F.X.R., Liem, A.K.D., Nolt, C., Peterson, R.E., Poellinger, L., Safe, S., Schrenk, D., Tillitt, D., Tysklind, M., Younes, M., Warn, F., Zacharewski, T.: Toxic equivalency factors (TEFs) for PCBs, PCDDs, PCDFs for humans and wildlife. Environ. Health Perspect. 106, 775–792 (1998)

    Article  Google Scholar 

  2. Safe, S.H.: Polychlorinated biphenyls (PCBs): environmental impact, biochemical and toxic responses, and implications for risk assessment. Crit. Rev. Toxicol. 24, 87–149 (1994)

    Article  CAS  Google Scholar 

  3. Fischer, L.J., Seegal, R.F., Ganey, P.E., Pessah, I.N., Kodavanti, P.R.S.: Symposium overview: toxicity of non-coplanar PCBs. Toxicol. Sci. 41, 49–61 (1998)

    CAS  Google Scholar 

  4. Zhang, Q.Z., Li, S.Q., Qu, X.H., Shi, X.Y., Wang, W.X.: A quantum mechanical study on the formation of PCDD/Fs from 2-chlorophenol as precursor. Environ. Sci. Technol. 42, 7301–7308 (2008)

    Article  CAS  Google Scholar 

  5. Qu, X.H., Wang, H., Zhang, Q.Z., Shi, X.Y., Xu, F., Wang, W.X.: Mechanistic and kinetic studies on the homogeneous gas-phase formation of PCDD/Fs from 2,4,5-trichlorophenol. Environ. Sci. Technol. 43, 4068–4075 (2009)

    Article  CAS  Google Scholar 

  6. Gentleman, D.J.: PCB POP. Environ. Sci. Technol. 44, 2747–2748 (2010)

    Article  CAS  Google Scholar 

  7. Hornbuckle, K., Robertson, L.: Polychlorinated biphenyls (PCBs): sources, exposures, toxicities. Environ. Sci. Technol. 44, 2749–2751 (2010)

    Article  CAS  Google Scholar 

  8. Kumar, K.S., Kannan, K., Corsolini, S., Evans, T., Giesy, J.P., Nakanishi, J., Masunaga, S.: Polychlorinated dibenzo-p-dioxins, dibenzofurans and polychlorinated biphenyls in polar bear, penguin and south polar skua. Environ. Pollut. 119, 151–161 (2002)

    Article  CAS  Google Scholar 

  9. Macdonald, R.W., Barrie, L.A., Bidleman, T.F., Diamond, M.L., Gregor, D.J., Semkin, R.G., Strachan, W.M.J., Li, Y.F., Wania, F., Alaee, M., Alexeeva, L.B., Backus, S.M., Bailey, R., Bewers, J.M., Gobeil, C., Halsall, C.J., Harner, T., Hoff, J.T., Jantunen, L.M.M., Lockhart, W.L., Mackay, D., Muir, D.C.G., Pudykiewicz, J., Reimer, K.J., Smith, J.N., Stern, G.A., Schroeder, W.H., Wagemann, R., Yunker, M.B.: Contaminants in the Canadian Arctic: 5 years of progress in understanding sources, occurrence and pathways. Sci. Total Environ. 254, 93–234 (2000)

    Article  CAS  Google Scholar 

  10. Binelli, A., Provini, A.: The PCB pollution of Lake Iseo (N. Italy) and the role of biomagnification in the pelagic food web. Chemosphere 53, 143–151 (2003)

    Article  CAS  Google Scholar 

  11. Pan, J., Yang, Y., Geng, C., Yeung, L.W.Y., Cao, X., Dai, T.: Polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins and dibenzofurans in marine and lacustrine sediments from the Shandong Peninsula, China. J. Hazard. Mater. 176, 274–279 (2010)

    Article  CAS  Google Scholar 

  12. Ramadass, P., Meerarani, P., Toborek, M., Robertson, L.W., Hennig, B.: Dietary flavonoids modulate PCB-induced oxidative stress, CYP1A1 induction, and AhR-DNA binding activity in vascular endothelial cells. Toxicol. Sci. 76, 212–219 (2003)

    Article  CAS  Google Scholar 

  13. Oakley, G.G., Devanaboyina, U., Robertson, L.W., Gupta, R.C.: Oxidative DNA damage induced by activation of polychlorinated biphenyls (PCBs): implications for PCB-induced oxidative stress in breast cancer. Chem. Res. Toxicol. 9, 1285–1292 (1996)

    Article  CAS  Google Scholar 

  14. Cogliano, V.J.: Assessing the cancer risk from environmental PCBs. Environ. Health Perspect. 106, 317–323 (1998)

    Article  CAS  Google Scholar 

  15. Ulbrich, B., Stahlmann, R.: Developmental toxicity of polychlorinated biphenyls (PCBs): a systematic review of experimental data. Arch. Toxicol. 78, 252–268 (2004)

    CAS  Google Scholar 

  16. Hestermann, E.V., Stegeman, J.J., Hahn, M.E.: Relative contributions of affinity and intrinsic efficacy to aryl hydrocarbon receptor ligand potency. Toxicol. Appl. Pharmacol. 168, 160–172 (2000)

    Article  CAS  Google Scholar 

  17. Brunstrom, B., Halldin, K.: EROD induction by environmental contaminants in avian embryo livers. Comp. Biochem. Physiol. C 121, 213–219 (1998)

    CAS  Google Scholar 

  18. Lores, M., Llompart, M., Gonzalez-Garcia, R., Gonzalez-Barreiro, C., Cela, R.: On-fibre photodegradation studies of polychlorinated biphenyls using SPME–GC–MS–MS: a new approach. Chemosphere 47, 607–615 (2002)

    Article  CAS  Google Scholar 

  19. Lores, M., Llompart, M., Gonzalez-Garcia, R., Gonzalez-Barreiro, C., Cela, R.: Photolysis of polychlorinated biphenyls by solid-phase microextraction “on-fibre” versus aqueous photodegradation. J. Chromatogr. A 963, 37–47 (2002)

    Article  CAS  Google Scholar 

  20. Chiarenzelli, J.R., Scrudato, R.J., Wunderlich, M.L., Pagano, J.J.: Combined steam distillation and electrochemical peroxidation (ECP) treatment of river sediment contaminated by PCBs. Chemosphere 45, 1159–1165 (2001)

    Article  CAS  Google Scholar 

  21. Arienzo, M., Chiarenzelli, J., Scrudato, R., Pagano, J., Falanga, L., Connor, B.: Iron-mediated reactions of polychlorinated biphenyls in electrochemical peroxidation process (ECP). Chemosphere 44, 1339–1346 (2001)

    Article  CAS  Google Scholar 

  22. Wiegel, J., Wu, Q.: Microbial reductive dehalogenation of polychlorinated biphenyls. FEMS Microbiol. Ecol. 32, 1–15 (2000)

    Article  CAS  Google Scholar 

  23. Pieper, D.H.: Aerobic degradation of polychlorinated biphenyls. Appl. Microbiol. Biotechnol. 67, 170–191 (2005)

    Article  CAS  Google Scholar 

  24. Borja, J., Taleon, D.M., Auresenia, J., Gallardo, S.: Polychlorinated biphenyls and their biodegradation. Process Biochem. 40, 1999–2013 (2005)

    Article  CAS  Google Scholar 

  25. Gavlasova, P., Kuncova, G., Kochankova, L., Mackova, M.: Whole cell biosensor for polychlorinated biphenyl analysis based on optical detection. Int. Biodeterior. Biodegrad. 62, 304–312 (2008)

    Article  CAS  Google Scholar 

  26. Yang, Y., Meng, G.: Ag dendritic nanostructures for rapid detection of polychlorinated biphenyls based on surface-enhanced Raman scattering effect. J. Appl. Phys. 107, 44315–44319 (2010)

    Article  Google Scholar 

  27. Li, M., Meng, G., Huang, Q., Yin, Z., Wu, M., Zhang, Z., Kong, M.: Prototype of a porous ZnO SPV-based sensor for PCB detection at room temperature under visible light illumination. Langmuir 26, 13703–13706 (2010)

    Article  CAS  Google Scholar 

  28. Huang, Z., Meng, G., Huang, Q., Yang, Y., Zhu, C., Tang, C.: Improved SERS performance from Au nanopillar arrays by abridging the pillar tip spacing by Ag sputtering. Adv. Mater. 22, 4136–4139 (2010)

    Article  CAS  Google Scholar 

  29. Haglund, P., Korytar, P., Danielsson, C., Jordi, D., Wiberg, K., Leonards, P., Brinkman, U., Boer, J.: GC × GC-ECD: a promising method for the determination of dioxins and dioxin-like PCBs in food and feed. Anal. Bioanal. Chem. 390, 1815–1827 (2008)

    Article  CAS  Google Scholar 

  30. Buzitis, J., Ylitalo, G.M., Krahn, M.M.: Rapid method for determination of dioxin-like polychlorinated biphenyls and other congeners in marine sediments using sonic extraction and photodiode array detection. Arch. Environ. Contam. Toxicol. 51, 337–346 (2006)

    Article  CAS  Google Scholar 

  31. Szejtli, J.: Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98, 1743–1753 (1998)

    Article  CAS  Google Scholar 

  32. Del Valle, E.M.M.: Cyclodextrins and their uses: a review. Process Biochem. 39, 1033–1046 (2004)

    Article  Google Scholar 

  33. Vyas, A., Saraf, S., Saraf, S.: Cyclodextrin based novel drug delivery systems. J. Incl. Phenom. Macrocycl. Chem. 62, 23–42 (2008)

    Article  CAS  Google Scholar 

  34. Messner, M., Kurkov, S.V., Jansook, P., Loftsson, T.: Self-assembled cyclodextrin aggregates and nanoparticles. Int. J. Pharm. 387, 199–208 (2010)

    Article  CAS  Google Scholar 

  35. Szente, L., Szejtli, J.: Cyclodextrins as food ingredients. Trends Food Sci. Technol. 15, 137–142 (2004)

    Article  CAS  Google Scholar 

  36. Szejtli, J., Szente, L.: Elimination of bitter, disgusting tastes of drugs and foods by cyclodextrins. Eur. J. Pharm. Biopharm. 61, 115–125 (2005)

    Article  CAS  Google Scholar 

  37. Brusseau, M.L., Wang, X., Hu, Q.: Enhanced transport of low-polarity organic compounds through soil by cyclodextrin. Environ. Sci. Technol. 28, 952–956 (1994)

    Article  CAS  Google Scholar 

  38. Leitgib, L., Gruiz, K., Fenyvesi, E., Balogh, G., Muranyi, A.: Development of an innovative soil remediation: “cyclodextrin-enhanced combined technology”. Sci. Total Environ. 392, 12–21 (2008)

    Article  CAS  Google Scholar 

  39. Dean, J.R., Scott, W.C.: Recent developments in assessing the bioavailability of persistent organic pollutants in the environment. Trends Anal. Chem. 23, 609–618 (2004)

    Article  CAS  Google Scholar 

  40. Sawicki, R., Mercier, L.: Evaluation of mesoporous cyclodextrin–silica nanocomposites for the removal of pesticides from aqueous media. Environ. Sci. Technol. 40, 1978–1983 (2006)

    Article  CAS  Google Scholar 

  41. Fava, F., Gioia, D.D., Marchetti, L.: Cyclodextrin effects on the ex-Situ bioremediation of a chronically polychlorobiphenyl-contaminated soil. Biotechnol. Bioeng. 58, 345–355 (1998)

    Article  CAS  Google Scholar 

  42. Fava, F., Ciccotosto, V.F.: Effects of randomly methylated-β-cyclodextrins (RAMEB) on the bioavailability and aerobic biodegradation of polychlorinated biphenyls in three pristine soils spiked with a transformer oil. Appl. Microbiol. Biotechnol. 58, 393–399 (2002)

    Article  CAS  Google Scholar 

  43. Fava, F., Bertin, L., Fedi, S., Zannoni, D.: Methyl-β-cyclodextrin-enhanced solubilization and aerobic biodegradation of polychlorinated biphenyls in two aged-contaminated soils. Biotechnol. Bioeng. 81, 381–390 (2003)

    Article  CAS  Google Scholar 

  44. Ehsan, S., Prasher, S.O., Marshall, W.D.: Simultaneous mobilization of heavy metals and polychlorinated biphenyl (PCB) compounds from soil with cyclodextrin and EDTA in admixture. Chemosphere 68, 150–158 (2007)

    Article  CAS  Google Scholar 

  45. Kida, T., Nakano, T., Fujino, Y., Matsumura, C., Miyawaki, K., Kato, E., Akashi, M.: Complete removal of chlorinated aromatic compounds from oils by channel-type γ-cyclodextrin assembly. Anal. Chem. 80, 317–320 (2008)

    Article  CAS  Google Scholar 

  46. Shao, D., Sheng, G., Chen, C., Wang, X., Nagatsu, M.: Removal of polychlorinated biphenyls from aqueous solutions using β-cyclodextrin grafted multiwalled carbon nanotubes. Chemosphere 79, 679–685 (2010)

    Article  CAS  Google Scholar 

  47. Safe, S.: Toxicology, structure–function relationship, and human and environmental health impacts of polychlorinated biphenyls: progress and problems. Environ. Health Perspect. 100, 259–268 (1993)

    Article  CAS  Google Scholar 

  48. Vezina, C.M., Walker, N.J., Olson, J.R.: Subchronic exposure to TCDD, PeCDF, PCB126, and PCB153: effect on hepatic gene expression. Environ. Health Perspect. 112, 1636–1644 (2004)

    Article  CAS  Google Scholar 

  49. Li, L.A., Wang, P.W., Chang, L.W.: Polychlorinated biphenyl 126 stimulates basal and inducible aldosterone biosynthesis of human adrenocortical H295R cells. Toxicol. Appl. Pharmacol. 195, 92–102 (2004)

    Article  CAS  Google Scholar 

  50. Song, M.O., Freedman, J.H.: Activation of mitogen activated protein kinases by PCB126 (3,3′,4,4′,5-Pentachlorobiphenyl) in HepG2 cells. Toxicol. Sci. 84, 308–318 (2005)

    Article  CAS  Google Scholar 

  51. Llabjani, V., Trevisan, J., Jones, K.C., Shore, R.F., Martin, F.L.: Binary mixture effects by PBDE congeners (47, 153, 183, or 209) and PCB congeners (126 or 153) in MCF-7 cells: biochemical alterations assessed by IR spectroscopy and multivariate analysis. Environ. Sci. Technol. 44, 3992–3998 (2010)

    Article  CAS  Google Scholar 

  52. Lindahl, E., Hess, B., van der Spoel, D.: GROMACS 3.0: a package for molecular simulation and trajectory analysis. J. Mol. Model. 7, 306–317 (2001)

    CAS  Google Scholar 

  53. Van der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A.E., Berendsen, H.J.C.: GROMACS: fast, flexible, and free. J. Comput. Chem. 26, 1701–1718 (2005)

    Article  Google Scholar 

  54. Hess, B., Kutzner, C., Van der Spoel, D., Lindahl, E.: GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4, 435–447 (2008)

    Article  CAS  Google Scholar 

  55. Zhang, H., Feng, W., Li, C., Tan, T.: Investigation of the inclusions of puerarin and daidzin with β-cyclodextrin by molecular dynamics simulation. J. Phys. Chem. B 114, 4876–4883 (2010)

    Article  CAS  Google Scholar 

  56. Brocos, P., Diaz-Vergara, N., Banquy, X., Perez-Casas, S., Costas, M., Pineiro, A.: Similarities and differences between cyclodextrin-sodium dodecyl sulfate host–guest complexes of different stoichiometries: molecular dynamics simulations at several temperatures. J. Phys. Chem. B 114, 12455–12467 (2010)

    Article  CAS  Google Scholar 

  57. Schuettelkopf, A.W., van Aalten, D.M.F.: PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta. Crystallogr. D60, 1355–1363 (2004)

    CAS  Google Scholar 

  58. Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., Hermans, J.: Interaction models for water in relation to protein hydration. In: Pullman, B. (ed.) Intermolecular Forces, pp. 331–342. Reidel, Dordrecht (1981)

    Chapter  Google Scholar 

  59. Darden, T., York, D., Pedersen, L.: Particle mesh Ewald: an N-log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993)

    Article  CAS  Google Scholar 

  60. Essmann, U., Perera, L., Berkowitz, M.L., Darden, T., Lee, H., Pedersen, L.G.: A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577–8593 (1995)

    Article  CAS  Google Scholar 

  61. Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., DiNola, A., Haak, J.R.: Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984)

    Article  CAS  Google Scholar 

  62. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery Jr, J.A., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., Pople, J.A.: Gaussian 03, Revision D. 01. Gaussian, Pittsburgh (2004)

    Google Scholar 

  63. Becke, A.D.: Density-functional thermochemistry. I. The effect of the exchange-only gradient correction. J. Chem. Phys. 96, 2155–2160 (1992)

    Article  CAS  Google Scholar 

  64. Lee, C., Yang, W., Parr, R.G.: Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988)

    Article  CAS  Google Scholar 

  65. Weinzinger, P., Weiss-Greiler, P., Snor, W., Viernstein, H., Wolschann, P.: Molecular dynamics simulations and quantum chemical calculations on β-cyclodextrin–spironolactone complex. J. Incl. Phenom. Macrocycl. Chem. 57, 29–33 (2007)

    Article  CAS  Google Scholar 

  66. Snor, W., Liedl, E., Weiss-Greiler, P., Viernstein, H., Wolschann, P.: Density functional calculations on meloxicam-β-cyclodextrin inclusion complexes. Int. J. Phytorem. 381, 146–152 (2009)

    CAS  Google Scholar 

  67. Steiner, T., Koellner, G.: Crystalline β-cyclodextrin hydrate at various humidities: fast, continuous, and reversible dehydration studied by X-ray diffraction. J. Am. Chem. Soc. 116, 5122–5128 (1994)

    Article  CAS  Google Scholar 

  68. Liu, P., Zhang, D.J., Zhan, J.H.: Investigation on the inclusions of PCB52 with cyclodextrins by performing DFT calculations and molecular dynamics simulations. J. Phys. Chem. A 114, 13122–13128 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is jointly supported by National Basic Research Program of China (973 Program 2007CB936602), National Natural Science Foundation of China (NSFC 20873076, 21075077), and Shandong Provincial Natural Science Foundation for Distinguished Young Scholar (JQ201004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongju Zhang or Jinhua Zhan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, P., Xu, H., Zhang, D. et al. Molecular inclusion of PCB126 by beta-cyclodextrin: a combined molecular dynamics simulation and quantum chemical study. J Incl Phenom Macrocycl Chem 76, 301–309 (2013). https://doi.org/10.1007/s10847-012-0199-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-012-0199-4

Keywords

Navigation