Skip to main content
Log in

Comparative study of carbon paste electrodes modified by new pentaaza macrocyclic ligands and gold nanoparticles embedded in three-dimensional sol–gel network for determination of trace amounts of Ag(I)

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Two new Ag(I) chemically modified carbon paste electrodes were prepared with comparative potentiometric study of 1,3,6,10,13-pentaaza-2,14-(2,6-pyridyl)-cyclotetradecane-4,12-dione (PPCT) and 1,3,6,9,11,12-pentaaza-2,13-(2,6-pyridyle)-bicycle[2,2,9]pentadecane-4,11-dione (PPBP) as ionophore. These sensors have been modified with sol–gel–Au nanoparticles to obtain a wide concentration range for potentiometric determination of Ag(I) in aqueous solutions. The sensors exhibit significantly enhanced selectivity toward Ag(I) ions over a wide concentration range of 4.0 × 10−9–2.2 × 10−2 and 2.2 × 10−7–2.0 × 10−2 mol L−1 with a lower detection limit of 2.5 × 10−9 and 2.0 × 10−7 mol L−1 for PPCT and PPBP modified electrodes respectively. The electrodes are highly selective to Ag(I) ions over a large number of mono, bi, and tri-valent cations. These electrodes were successfully used as indicator electrode for potentiometric determination of silver in sulphadiazine (burning cream) and radiological film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wygladacz, K., Radu, A., Xu, C., Qin, Y., Bakker, E.: Fiber-optic microsensor array based on fluorescent bulk optode microspheres for the trace analysis of silver ions. Anal. Chem. 77, 4706–4712 (2005)

    Article  CAS  Google Scholar 

  2. Haji Shabani, A.M., Dadfarnia, S., Jafari, A.A., Shahabasi, Z.: Flame atomic absorption spectrometric determination of trace amounts of silver in aqueous sample after solid phase extraction using octadecyl silica membrane disks modified by 2-[(2-mercapt ophenyliminio)methyl]phenol. Can. J. Anal. Sci. Spectrosc. 51, 194–199 (2006)

    Google Scholar 

  3. Jingyu, H., Zheng, L., Haizhou, W.: Determination of trace silver in superalloys and steels by inductively coupled plasma-mass spectrometry. Anal. Chim. Acta 451, 329–335 (2002)

    Article  Google Scholar 

  4. Wang, T., Jia, X., Wu, J.: Direct determination of metals in organics by inductively coupled plasma atomic emission spectrometry in aqueous matrices. J. Pharm. Biomed. Anal. 33, 639–646 (2003)

    Article  CAS  Google Scholar 

  5. Ibrahim, H.: Carbon paste electrode modified with silver thimerosal for the potentiometric flow injection analysis of silver(I). Anal. Chim. Acta 545, 158–165 (2005)

    Article  CAS  Google Scholar 

  6. Khodari, M., Abou Krisha, M.M., Fandy, R.: Determination of Ag(I) with chemically modified carbon paste electrode based on 2,3-dicyano 1,4-naphthoquinone. Talanta 41, 2179–2182 (1994)

    Article  CAS  Google Scholar 

  7. Gupta, V.K., Pal, M.K., Singh, A.K.: Comparative study of Ag(I) selective poly(vinyl chloride) membrane sensors based on newly developed Schiff-base lariat ethers derived from 4,13-diaza-18-crown-6. Anal. Chim. Acta 631, 161–169 (2009)

    Article  CAS  Google Scholar 

  8. Kalcher, K., Kauffmann, J.M., Wang, J., Svancara, I., Vytras, K., Neuhold, C., Yang, Z.: Sensors based on carbon paste in electrochemical analysis: a review with particular emphasis on the period 1990–1993. Electroanalysis 7, 5–22 (1995)

    Article  CAS  Google Scholar 

  9. Svancara, I., Vytras, K., Barek, J., Zima, J.: Carbon paste electrodes in modern electroanalysis. Crit. Rev. Anal. Chem. 31, 311–345 (2001)

    Article  CAS  Google Scholar 

  10. Mashhadizadeh, M.H., Khani, H.: Sol–gel–Au nano-particle modified carbon paste electrode for potentiometric determination of sub ppb level of Al(III). Anal. Methods 2, 24–31 (2010)

    Article  CAS  Google Scholar 

  11. Walcarius, A.: Electroanalysis with pure, chemically modified, and sol–gel-derived silica-based materials. Electroanalysis 13, 701–718 (2001)

    Article  CAS  Google Scholar 

  12. Perez-Quintanilla, I., del Hierro, M.F., Sierra, I.: Cr(VI) adsorption on functionalized amorphous and mesoporous silica from aqueous and non-aqueous media. Mater. Res. Bull. 42, 1518–1530 (2007)

    Article  CAS  Google Scholar 

  13. El-Deab, M.S., Okajima, T., Ohsaka, T.: Electrochemical reduction of oxygen on gold nanoparticle-electrodeposited glassy carbon electrodes. J. Electrochem. Soc. 150, A851–A857 (2003)

    Article  CAS  Google Scholar 

  14. El-Deab, M.S., Ohsaka, T.: Manganese oxide nanoparticles electrodeposited on platinum are superior to platinum for oxygen reduction. Angew. Chem. Int. Ed. 45, 5963–5966 (2006)

    Article  CAS  Google Scholar 

  15. Zayats, M., Baron, R., Popov, I., Willner, I.: Biocatalytic growth of Au nanoparticles: from mechanistic aspects to biosensors design. Nano Lett. 5, 21–25 (2005)

    Article  CAS  Google Scholar 

  16. Xiao, Y., Pavlov, V., Levine, S., Niazov, T., Markovitch, G., Willner, I.: Catalytic growth of Au nanoparticles by NAD(P)H cofactors: optical sensors for NAD(P)+-dependent biocatalyzed transformations. Angew. Chem. Int. Ed. 43, 4519–4522 (2004)

    Article  CAS  Google Scholar 

  17. Katz, E., Willner, I.: Integrated nanoparticle–biomolecule hybrid systems: synthesis, properties, and applications. Angew. Chem. Int. Ed. 43, 6042–6108 (2004)

    Article  CAS  Google Scholar 

  18. Daniel, M.-C., Astruc, D.: Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104, 293–346 (2004)

    Article  CAS  Google Scholar 

  19. Seol, Y., Carpenter, A.E., Perkins, T.T.: Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating. Opt. Lett. 31, 2429–2431 (2006)

    Article  CAS  Google Scholar 

  20. Raj, A.R., Okajima, T., Ohsaka, T.: Gold nanoparticle arrays for the voltammetric sensing of dopamine. J. Electroanal. Chem. 543, 127–133 (2003)

    Article  CAS  Google Scholar 

  21. Walcarius, A., Mandler, D., Cox, J.A., Collinson, M., Lev, O.: Exciting new directions in the intersection of functionalized sol–gel materials with electrochemistry. J. Mater. Chem. 15, 3663–3689 (2005)

    Article  CAS  Google Scholar 

  22. Ijeri, V.S., Srivastava, A.K.: Complexation of macrocyclic compounds with metal ions: 1. Cd(II), Pb(II), Co(II), Mn(II), and Ag(I) ions in 40 vol % ethanol + water medium. J. Chem. Eng. Data 47, 346–350 (2002)

    Article  CAS  Google Scholar 

  23. Mashhadizadeh, M.H., Eskandari, Kh., Foroumadi, A., Shafiee, A.: Self-assembled mercapto-compound-gold-nanoparticle-modified carbon paste electrode for potentiometric determination of cadmium(II). Electroanalysis 20, 1891–1896 (2008)

    Article  CAS  Google Scholar 

  24. Mashhadizadeh, M.H., Eskandari, Kh., Foroumadi, A., Shafiee, A.: Copper(II) modified carbon paste electrodes based on self-assembled mercapto compounds-gold-nanoparticle. Talanta 76, 497–502 (2008)

    Article  CAS  Google Scholar 

  25. Mashhadizadeh, M.H., Pourtaghavi Talemi, R.: Used gold nano-particles as an on/off switch for response of a potentiometric sensor to Al(III) or Cu(II) metal ions. Anal. Chim. Acta 692, 109–115 (2011)

    Article  CAS  Google Scholar 

  26. Cortez, S.M., Raptis, R.G.: Silver 1995. Coord. Chem. Rev. 169, 363–426 (1998)

  27. Paiva, A.P.: Solvent extraction and related studies on silver recovery from aqueous solutions. Sep. Sci. Technol. 28(4), 947–1008 (1993)

    Google Scholar 

  28. Mashhadizadeh, M.H., Mostafavi, A., Allah-Abadi, H., Sheikhshoai, I.: New Schiff base modified carbon paste and coated wire PVC membrane electrode for silver ion. Sens. Actuators B 113, 930–936 (2006)

    Article  CAS  Google Scholar 

  29. IUPAC, Analytical Chemistry Division, Commission on Analytical Nomenclature: Recommendations for nomenclature of ion-selective electrodes. Pure Appl. Chem. 48, 127–132 (1976)

    Article  Google Scholar 

  30. Parsa, M., Yaftian, M.R., Matt, D.: A new silver(I) potentiometric sensor based on a calix[4]arene substituted at the narrow rim by amide/phosphoryl groups. J. Chin. Chem. Soc. 54, 1529–1534 (2007)

    CAS  Google Scholar 

  31. Badr, I.H.A.: A new neutral carrier for silver ions based on a bis(thiothiazole) derivative and its evaluation in membrane electrodes. Microchim. Acta 149, 87–94 (2005)

    Article  CAS  Google Scholar 

  32. Yan, Z., Lu, Y., Li, X.: Silver ion-selective electrodes based on bis(dialkyldithiocarbamates) as neutral ionophores. Sens. Actuators B 122, 174–181 (2007)

    Article  CAS  Google Scholar 

  33. Kim, B.H., Hong, H.P., Cho, K.T., On, J.H., Jun, Y.M., Jeong, I.S., Cha, G.S., Nam, H.: Silver(I) ion selective ionophores containing dithiocarbamoyl moieties on steroid backbone. Talanta 66, 794–804 (2005)

    Article  CAS  Google Scholar 

  34. Mashhadizadeh, M.H., Shockravi, A., Khoubi, Z., Heidarian, D.: Efficient synthesis of a new podand and application as a suitable carrier for silver ion-selective electrode. Electroanalysis 21, 1041–1047 (2009)

    Article  CAS  Google Scholar 

  35. Zhang, X.-B., Hana, Z.-X., Fang, Z.-H., Shen, G.-L., Yu, R.-Q.: 5,10,15-Tris(pentafluorophenyl)corrole as highly selective neutral carrier for a silver ion-sensitive electrode. Anal. Chim. Acta 562, 210–215 (2006)

    Article  CAS  Google Scholar 

  36. Goldcamp, M.J., Ashley, K., Edison, S.E., Pretty, J., Shumaker, J.: A bis-oxime derivative of diaza-18-crown-6 as an ionophore for silver ion. Electroanalysis 17, 1015–1018 (2005)

    Article  CAS  Google Scholar 

  37. Hassouna, M.E.M., Elsuccary, S.A.A., Graham, J.P.: N,N′-Bis(3-methyl-1-phenyl-4-benzylidine-5-pyrazolone)propylenedia mine Schiff base as a neutral carrier for silver (I) ion-selective electrodes. Sens. Actuators B 146, 79–90 (2010)

    Article  CAS  Google Scholar 

  38. Saez de Viteri, F.J., Diamond, D.: Adsorption of environmentally important metal ions on solid particles. Part 1. Anodic stripping voltammetry in the presence of solid particles. Analyst 119, 749–758 (1994)

    Article  CAS  Google Scholar 

  39. Hancock, R.D.: Macrocycles and their selectivity for metal ions on the basis of sizes. Pure Appl. Chem. 58, 1445–1452 (1986)

    Article  CAS  Google Scholar 

  40. Pedersen, C.J.: Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc. 89, 7017–7036 (1967)

    Article  CAS  Google Scholar 

  41. Abbaspour, A., Izadyar, A., Sharghi, H.: Carbon composition PVC based membrane in a highly selective and sensitive coated wire electrode for silver ion. Anal. Chim. Acta 525, 91–96 (2004)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hossein Mashhadizadeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mashhadizadeh, M.H., Ramezani, S., Shockravi, A. et al. Comparative study of carbon paste electrodes modified by new pentaaza macrocyclic ligands and gold nanoparticles embedded in three-dimensional sol–gel network for determination of trace amounts of Ag(I). J Incl Phenom Macrocycl Chem 76, 283–291 (2013). https://doi.org/10.1007/s10847-012-0197-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-012-0197-6

Keywords

Navigation