Skip to main content
Log in

Enantioselective phosphorescence behavior of naproxen in β-cyclodextrin supramolecular complex

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

In the presence of small amount of 1-iodo butane (IBu) (0.1 % (v/v)), Naproxen (Nap) displays strong room temperature phosphorescence (RTP) in β-cyclodextrin (β-CD) solution without deoxygenation because of the formation of ternary complex of β-CD, Nap, and IBu. The results indicate that β-CD shows good enantiodiscrimination for (R)-Nap and (S)-Nap. The RTP intensity of (R)-Nap is larger than that of (S)-Nap, the difference being 29.2 %. Both (R)-Nap and (S)-Nap exhibit single exponential phosphorescence decay with different lifetimes of 2.535 ± 0.056 and 1.798 ± 0.076 ms for (R)-Nap and for (S)-Nap, respectively. The corresponding association constants evaluated for (R)-Nap/β-CD/IBu and (S)-Nap/β-CD/IBu ternary complexes are (8.02 ± 0.15) × 103 and (2.50 ± 0.06) × 103 L mol−1, respectively. Thus, the observation of RTP differences between (R)-Nap and (S)-Nap can be attributed to their different ability to form complexes with chiral β-CD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Chart 1

Similar content being viewed by others

References

  1. Cirri, M., Maestrelli, F., Corti, G., Furlanetto, S., Mura, P.: Simultaneous effect of cyclodextrin complexation, pH, and hydrophilic polymers on naproxen solubilization. J. Pharm. Biomed. Anal. 42, 126–131 (2006)

    Article  CAS  Google Scholar 

  2. Cheng, X.L., Zhao, L.X., Liu, M.L., Lin, J.M.: In vitro monitoring of nanogram levels of naproxen in human urine using flow injection chemiluminescence. Anal. Chim. Acta 558, 296–301 (2006)

    Article  CAS  Google Scholar 

  3. Loll, P.J., Picot, D., Ekabo, O., Garavito, R.M.: Synthesis and use of iodinated nonsteroidal anti-inflammatory drug analogues as crystallographic probes of the prostaglandin H2 synthase cyclooxygenase active site. Biochemistry 35, 7330–7340 (1996)

    Article  CAS  Google Scholar 

  4. Harrison, I.T., Lewis, B., Nelson, P., Rooks, W., Roszkowski, A., Tomolonis, A., Fried, J.H.: Nonsteroidal antiinflammatory agents. I. 6-Substituted 2-naphthyl acetic acids. J. Med. Chem. 13, 203–205 (1970)

    Article  CAS  Google Scholar 

  5. Cui, Y.M., Wei, D.Z., Yu, J.T.: Lipase-catalyzed esterification in organic solvent to resolve racemic naproxen. Biotechnol. Lett. 19, 865–868 (1997)

    Article  CAS  Google Scholar 

  6. González, S., Pelaéz, R., Sanz, F., Jiménez, M.B., Morán, J.R., Caballero, M.C.: Macrocyclic chiral receptors toward enantioselective recognition of naproxen. Org. Lett. 8, 4679–4682 (2006)

    Article  Google Scholar 

  7. Li, S., Purdy, W.C.: Cyclodextrins and their applications in analytical chemistry. Chem. Rev. 92, 1457–1470 (1992)

    Article  CAS  Google Scholar 

  8. Liu, Y., Li, L., Zhang, H.Y., Fan, Z., Guan, X.D.: Selective binding of chiral molecules of cinchona alkaloid by β- and γ-cyclodextrins and organoselenium-bridged bis(β-cyclodextrin)s. Bioorg. Chem. 31, 11–23 (2003)

    Article  Google Scholar 

  9. Bakirci, H., Nau, W.M.: Chiral discrimination in the complexation of heptakis-(2, 6-di-O -methyl)-β-cyclodextrin with 2, 3-diazabicyclo[2.2.2]oct-2-ene derivatives. J. Photochem. Photobio. A 173, 340–348 (2005)

    Article  CAS  Google Scholar 

  10. Fan, Y.X., Yang, Y., Shuang, S.M., Dong, C.: Molecular recognition of α-cyclodextrin (CD) to chiral amino acids based on methyl orange as a molecular probe. Spectrochim. Acta 61, 953–959 (2005)

    Article  Google Scholar 

  11. Kumar, V.P., Suryanarayana, I., Nageswar, Y.V.D., Rao, K.R.: Chiral discrimination of tolterodine tartrate by modified cyclodextrins. J. Carbohydr. Chem. 27, 223–230 (2008)

    Article  Google Scholar 

  12. Sun, P., MacDonnell, F.M., Armstrong, D.W.: Enantioselective host–guest complexation of Ru(II) tris diimine complexes using neutral and anionic derivatized cyclodextrins. Inorg. Chim. Acta 362, 3073–3078 (2009)

    Article  CAS  Google Scholar 

  13. García-Ruiz, C., Hu, X.S., Ariese, F., Gooijer, C.: Enantioselective room temperature phosphorescence detection of non-phosphorescent analytes based on interaction with β-cyclodextrin/1-bromo naphthalene complexes. Talanta 66, 634–640 (2005)

    Article  Google Scholar 

  14. García-Ruiz, C., Siderius, M., Ariese, F., Gooijer, C.: Quenched phosphorescence as a detection method in capillary electrophoretic chiral separations. Monitoring the stereoselective biodegradation of camphorquinone by yeast. Anal. Chem. 76, 399–403 (2004)

    Article  Google Scholar 

  15. García-Ruiz, C., Scholtes, M.J., Ariese, F., Gooijer, C.: Enantioselective detection of chiral phosphorescent analytes in cyclodextrin complexes. Talanta 66, 641–645 (2005)

    Article  Google Scholar 

  16. Lammers, I., Buijs, J., van der Zwan, G., Ariese, F., Gooijer, C.: Phosphorescence for sensitive enantioselective detection in chiral capillary electrophoresis. Anal. Chem. 81, 6226–6233 (2009)

    Article  CAS  Google Scholar 

  17. Zhang, X.H., Wang, Y., Jin, W.J.: Chiral discrimination of quinine and quinidine based on notable room temperature phosphorescence lifetime differences with γ-cyclodextrin as chiral selector. Talanta 73, 938–942 (2007)

    Article  CAS  Google Scholar 

  18. Zhang, X.H., Wang, Y., Jin, W.J.: Enantiomeric discrimination of 1,1′-binaphthol by room temperature phosphorimetry using γ-cyclodextrin as chiral selector. Anal. Chim. Acta 622, 157–162 (2008)

    Article  CAS  Google Scholar 

  19. Wang, Y., Feng, T.T., Chao, J.B., Qin, L.P., Zhang, Z., Jin, W.J.: Phosphorescence properties and chiral discrimination of camphorquinone enantiomers in the presence of α-cyclodextrin and 1,2-dibromoethane. J. Photochem. Photobio. A Chem. 212, 49–55 (2010)

    Article  CAS  Google Scholar 

  20. Wang, J., Warner, I.M.: Studies of the naproxen: β-Cyclodextrin inclusion complex. Microchem. J. 48, 229–239 (1993)

    Article  CAS  Google Scholar 

  21. Sadlej-Sosnowska, N., Kozerski, L., Bednarek, E., Sitkowski, J.: Fluorometric and NMR studies of the naproxen–cyclodextrin inclusion complexes in aqueous solutions. J. Incl. Phenom. Macrocycl. Chem. 37, 383–394 (2000)

    Article  CAS  Google Scholar 

  22. Bettinetti, G., Melani, E., Mura, E., Monnanni, R., Giordano, E.: Carbon-13 nuclear magnetic resonance study of naproxen interaction with cyclodextrins in solution. J. Pharm. Sci. 80, 1162–1170 (1991)

    Article  CAS  Google Scholar 

  23. Junco, S., Casimiro, T., Ribeiro, N., Ponte, M.N.D., Marques, H.C.: A comparative study of naproxen-beta cyclodextrin complexes prepared by conventional methods and using supercritical carbon dioxide. J. Incl. Phenom. Macrocycl. Chem. 44, 117–121 (2002)

    Article  CAS  Google Scholar 

  24. Rapado Martínez, I., Villanueva Camañas, R.M., García-Alvarez-Coque, M.C.: Micelle-stabilized room-temperature phosphorimetric procedure for the determination of naproxen and propranolol in pharmaceutical preparations. Analyst 119, 1093–1097 (1994)

    Article  Google Scholar 

  25. Carretero, A.S., Cruces-Blanco, C., Ramirez, M.I., Diaz, G.B.C., Fernández-Gutiérrez, A.: Simple and rapid determination of the drug naproxen in pharmaceutical preparations by heavy atom-induced room temperature phosphorescence. Talanta 50, 401–407 (1999)

    Article  Google Scholar 

  26. Pérez-Ruiz, T., Martínez Lozano, C., Tomás, V., Carpena, J.: Selective determination of naproxen in the presence of nonsteroidal anti-inflammatory drugs in serum and urine samples using room temperature liquid phosphorimetry. J. Pharm. Biomed. Anal. 17, 719–724 (1998)

    Article  Google Scholar 

  27. Bussey III, R.O., Schuh, M.D.: Quantitation of naproxen by quenching of phosphorescence from a ternary complex of 2-bromo-6-methoxynaphthalene and α-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 57, 163–167 (2007)

    Article  CAS  Google Scholar 

  28. Segura Carretero, A., Cruces-Blanco, C., Cañabate-Díaz, B., Fernández-Sánchez, J.F., Fernández-Gutiérrez, A.: Heavy-atom induced room-temperature phosphorescence: a straightforward methodology for the determination of organic compounds in solution. Anal. Chim. Acta 417, 19–30 (2000)

    Article  CAS  Google Scholar 

  29. Arancibia, J.A., Escandar, G.M.: Determination of naproxen in pharmaceutical preparations by room-temperature phosphorescence. A comparative study of several organized media. Analyst 126, 917–922 (2001)

    Article  CAS  Google Scholar 

  30. Segura Carretero, A., Cruces-Blanco, C., Ramírez Garcıía, M.I., Diaz, B.C., Fernández-Gutiérrez, A.: Simple and rapid determination of the drug naproxen in pharmaceutical preparations by heavy atom-induced room temperature phosphorescence. Talanta 50, 401–407 (1999)

  31. Jiménez, M.C., Pischel, U., Miranda, M.A.: Photoinduced processes in naproxen-based chiral dyads. J. Photochem. Photobio. C 8, 128–142 (2007)

    Article  Google Scholar 

  32. Valero, M., López-Cornejo, M.P., Costa, S.M.B.: Effect of the structure and concentration of cyclodextrins in the quenching process of naproxen. J. Photochem. Photobio. A 188, 5–11 (2007)

    Article  CAS  Google Scholar 

  33. Fernández-Sánchez, J.F., Segura-Carretero, A., Cruces-Blanco, C., Fernández-Gutiérrez, A.: Room-temperature luminescence optosensings based on immobilized active principles actives. Application to nafronyl and naproxen determination in pharmaceutical preparations and biological Fluids. Anal. Chim. Acta 462, 217–224 (2002)

    Article  Google Scholar 

  34. Banerjee, T., Singh, S.K., Kishore, N.: Binding of naproxen and amitriptyline to bovine serum albumin: biophysical aspects. J. Phys. Chem. B 110, 24147–24156 (2006)

    Article  CAS  Google Scholar 

  35. Wen, X.H., Tan, F., Jing, Z.J., Liu, Z.Y.: Preparation and study the 1:2 inclusion complex of carvedilol with β-cyclodextrin. J. Pharma. Biomed. Anal. 34, 517–523 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Natural Science Foundation of Shanxi Province (No. 2008011015-1), the Project Sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry and Research Project Supported by Shanxi Scholarship Council of China (2011-008).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y. Wang or W. J. Jin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Feng, T.T., Shi, L.L. et al. Enantioselective phosphorescence behavior of naproxen in β-cyclodextrin supramolecular complex. J Incl Phenom Macrocycl Chem 76, 151–158 (2013). https://doi.org/10.1007/s10847-012-0184-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-012-0184-y

Keywords

Navigation