Skip to main content
Log in

Solid-state NMR and wide-angle X-ray diffraction study of hydrofluoroether/β-cyclodextrin inclusion complex

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

An inclusion complex (IC) composed of a hydrofluoroether (HFE) guest and a β-cyclodextrin (β-CD) host was newly prepared, and the crystalline structure and the thermal stability of the IC were examined using several analytical methods, including wide-angle X-ray diffraction (WAXD), solid-state NMR, thermogravimetric analysis (TGA), TG–mass spectrometry (TG–MS), and quantum chemical calculation. The WAXD patterns and elemental analysis identified that the IC of an HFE/β-CD form of a channel-type structure, in which one HFE molecule is included in a common cavity of two β-CD molecules. TGA and TG–MS analysis indicated that the HFE molecules included in β-CD are hardly evaporated or degraded up to the decomposition temperature of the β-CD host. Solid-state 13C NMR indicated that the β-CD ring structure was deformed by including an HFE molecule in it, and that the 19F NMR signals of the HFE guest were significantly shifted to higher frequencies by the inclusion due to the dielectric media effect in the cavity of β-CD. Moreover, the 19F NMR signals of HFE included in IC were further shifted after annealing at 150 °C, which reflected structural changes in HFE/β-CD IC caused at elevated temperatures. The WAXD patterns also confirmed that the packing structure along the crystalline b-direction of HFE/β-CDs, which penetrates the cavities of β-CDs, was compressed by annealing and transformed to a more stable structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Danielsson, J., Javet, J., Damberg, P., Gräslund, A.: Two-site binding of β-cyclodextrin to the Alzheimer Aβ(1–40) peptide measured with combined PFG-NMR diffusion and induced chemical shifts. Biochemistry 43, 6261–6269 (2004)

    Article  CAS  Google Scholar 

  2. Harata, K.: Structural aspects of stereodifferentiation in the solid state. Chem. Rev. 98, 1803–1828 (1998)

    Article  CAS  Google Scholar 

  3. Hollowell, J.G., Staehling, N.W., Flanders, W.D., Gunter, E.W., Spencer, C.A., Braverman, L.E.: Serum TSH, T4, and thyroid antibodies in the United States population (1988 to 1994): national health and nutrition examination survey (NHANES III). J. Clin. Endocrinol. Metab. 87, 489–499 (2002)

    Article  CAS  Google Scholar 

  4. Misale, M., Gugloelmini, G., Priarone, A.: HFE-7100 pool boiling heat transfer and critical heat flux in inclined narrow spaces HFE-7100. Int. J. Refrig. 32, 235–245 (2009)

    Article  CAS  Google Scholar 

  5. Christensen, L.K., Sehested, J., Nielsen, O.J., Bilde, M., Wallington, T.J., Guschin, A., Molina, L.T., Molina, M.J.: Atmospheric chemistry of HFE-7200 (C4F9OC2H5): reaction with OH radicals and fate of C4F9OCH2CH2O(·) and C4F9OCHO(·)CH3 radicals. J. Phys. Chem. A 102, 4839–4845 (1998)

    Article  CAS  Google Scholar 

  6. Martinez-Haya, B., Hurtado, P., Hortal, A.R., Hamad, S., Steill, J.D., Oomens, J.: Emergence of symmetry and chirality in crown ether complexes with alkali metal cations. 114, 7048–7054 (2010)

  7. Shinkai, S., Araki, K., Manabe, O.: Does the calixarene cavity recognise the size of guest molecules? On the ‘hole-size selectivity’ in water-soluble calixarenes. J. Chem. Soc. Chem. Commun. 3, 156–158 (1988)

    Google Scholar 

  8. Silva, D.L., Tavares, E.C., Conegero, L.S., Fatima, A., Pilli, R.A., Fernandes, S.A.: NMR studies of inclusion complexation of pyrrolizidine alkaloid retronecine and p-sulfonic acid calix[6] arene. J. Incl. Phenom. Macrocycl. Chem. 69, 149–155 (2011)

    Article  CAS  Google Scholar 

  9. Lu, J., Shin, I.D., Nojima, S., Tonelli, A.E.: Formation and characterization of the inclusion compounds between poly(ε-caprolactone)-poly(ethelene oxide)-poly(ε-caprolactone) triblock copolymer and α- and γ-cyclodextirin. Polymer 41, 5871–5883 (2000)

    Article  CAS  Google Scholar 

  10. Lu, J., Mirau, P.S., Shin, I.D., Nojima, S., Toneli, A.E.: Molecular motions in the supramolecular complexes between poly(ε-caprolactone)-poly(ethylene oxide)-poly(ε-caprolactone) and α- and γ-cyclodextrins. Macromol. Chem. Phys. 203, 71–79 (2002)

    Article  CAS  Google Scholar 

  11. Saalwächter, K.: An investigation of poly(dimethylsiloxane) chain dynamics and orders in its inclusion compound with γ-cyclodextrin by fast-MAS solid-state NMR spectroscopy. Macromol. Rapid Commun. 23, 286–291 (2002)

    Article  Google Scholar 

  12. Tatsuno, H., Ando, S.: Structure and dynamics of perfluoroalkane/β-cyclodextrin inclusion compounds as studied by solid-state 19F MAS and 1 19F CP/MAS NMR spectroscopy. J. Phys. Chem. B. 110, 25751–25760 (2006)

    Article  CAS  Google Scholar 

  13. Lindner, K., Saenger, W.: β-Cyclodextrin dodecahydrate: crowding of water molecules within a hydrophobic cavity. Angew. Chem. Int. Ed. 17, 694–695 (1978)

    Article  Google Scholar 

  14. Steiner, T., Koellner, G.: Crystalline beta-cyclodextrin hydrate various humidities: fast continuous, and reversible dehydration studied by X-ray diffraction. J. Am. Chem. Soc. 116, 5122–5128 (1994)

    Article  CAS  Google Scholar 

  15. Lindner, K., Saenger, W.: Crystal and molecular structure of cyclohepta-amylose dodecahydrate. Carbohydr. Res. 99, 103–105 (1982)

    Article  CAS  Google Scholar 

  16. Bojinova, T., Gornitzka, H., Viguerie, N.L., Rico-Lattes, I.: Crystal structure of the dimeric β-cyclodextrin complex with 1,12-dodecanediol. Carbohydr. Res. 338, 781–785 (2003)

    Article  CAS  Google Scholar 

  17. Mentzafos, D., Mavridis, I.M., Le Bas, I.G., Tsoucaris, G.: Structure of the 4-tert-butylbenzyl alcohol-β-cyclodextrub dimeric complexes. Acta Crystallogr. Sect. B 47, 746–757 (1991)

    Article  Google Scholar 

  18. Zhao, Y.L., Benitez, D., Yoon, I., Stoddart, J.F.: Inclusion behavior of β-cyclodextrin with bipyridine molecules: factors governing host-guest inclusion geometries. Chem. Asian J. 4, 446–456 (2009)

    Article  CAS  Google Scholar 

  19. Giastas, P., Yannakopoulou, K., Mavridis, I.M.: Molecular structures of the inclusion complexes β-cyclodextrin-1,2-bis(4-aminophenyol)ethane and β-cyclodextrin-4,4′-diaminobiphenyl; packing of dimeric β-cyclodextrin inclusion complexes. Acta Crystallogr. Sect. B 59, 287–299 (2003)

    Article  Google Scholar 

  20. Zejli, S.: Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98, 1743–1754 (1998)

    Article  Google Scholar 

  21. Li, N., Liu, J., Zhao, X., Gao, Y., Zheng, L., Zheng, J., Yu, L.: Complex formation of ionic liquid surfactant and β-cyclodextrin. Colloids Surf. A 292, 196–201 (2007)

    Article  CAS  Google Scholar 

  22. Sfihi, H., Legrand, A.P., Doussot, J., Guy, A.: Solid-state 13C NMR study of β-cyclodextrin/substituted aromatic ketone complexes: evidence for two kinds of complexation of the guest molecules. Colloids Surf. A 115, 115–126 (1996)

    Article  CAS  Google Scholar 

  23. Horii, F., Hirai, A., Kitamaru, R.: Relationships between carbon-13 chemical shifts and conformations of oligosaccharides and cellulose in the solid state. Bull. Magn. Reson. 5, 190 (1983)

    Google Scholar 

  24. Gidly, M.J., Bociek, S.M.: Carbon-13 CP/MAS NMR studies of amylose inclusion complexes, cyclodextrins, and the amorphous phase of starch granules: relationships between glycosidic linkage conformation and solid-state carbon-13 chemical shifts. J. Am. Chem. Soc. 110, 3820–3829 (1988)

    Article  Google Scholar 

  25. Jarvis, M.C.: Relationship of chemical shift to glycosidic conformation in the solid-state 13C NMR spectra of (1  4)-linked glucose polymers and oligomers: anomeric and related effects. Carbohydr. Res. 259, 311–318 (1994)

    Article  CAS  Google Scholar 

  26. Zhang, P., Klymachyov, A.N., Brown, S., Ellington, J.G., Grandinetti, P.J.: Solid-state 13C NMR investigations of the glycosidic linkage in α–α’ trehalose. Solid State Nucl. Magn. Reson. 12, 221–225 (1998)

    Article  CAS  Google Scholar 

  27. Szafranex, A., Szafranex, J.: Themogravimetric properties of inclusion complexes of β-cyclodextrin with benzene, acetylsalicylic acid and methyl salicylate. J. Incl. Phenom. Mol. 15, 351–358 (1993)

    Article  Google Scholar 

  28. Giordano, F., Mnpvac, C., Moyano, J.R.: Thermal analysis of cyclodextrins and their inclusion compounds. Themochim. Acta. 123, 123–151 (2001)

    Article  Google Scholar 

  29. Trotta, F., Zanetti, M., Camino, G.: Thermal degradation of cyclodextrins. Polym. Degrad. Stab. 69, 373–379 (2000)

    Article  CAS  Google Scholar 

  30. Éhen, Z., Giordano, F., Sztatisz, J., Jinsinszky, L., Novák, C.: Thermal characterization of natural and modified cyclodextrins using TG–MS combined technique. J. Therm. Anal. Cal. 80, 419–424 (2005)

    Article  Google Scholar 

  31. Macrae, C.F., Bruno, I.J., Chisholm, J.A., Edgington, P.R., McCabe, P., Pidcock, E., Rodriques Monge, L., Taylor, R., van de Streek, J., Wood, P.A.: Mercury CSD 2.0—new features for the visualization and investigation of crystal structures. J. Appl. Cryst. 41, 466–470 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The synchrotron radiation experiments were performed with a BL40B2 beam line with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (Proposal 2009A-1348, 2009B-1306). The authors thank Noboru Ohta at the Japan Synchrotron Radiation Research Institute (JASRI)/SPring-8 for support and advice on the synchrotron WAXD measurements. The authors also thank Kenzo Deguchi at the National Institute for Materials Science and Shigeki Kuroki at the Tokyo Institute of Technology for technical assistance on solid-state NMR and TG–MS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinji Ando.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koito, Y., Yamada, K. & Ando, S. Solid-state NMR and wide-angle X-ray diffraction study of hydrofluoroether/β-cyclodextrin inclusion complex. J Incl Phenom Macrocycl Chem 76, 143–150 (2013). https://doi.org/10.1007/s10847-012-0183-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-012-0183-z

Keywords

Navigation