Skip to main content
Log in

Effect of the degree of branching of hyperbranched poly(aryl ether ketone) template on the properties of self-assembled CdS nanocrystals

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work we have investigated the effect of the degree of branching of hyperbranched poly(aryl ether ketone) (expressed as HPAEK) on the fluorescence spectra of the CdS/poly(aryl ether ketone) nanocomposites. CdS/HPAEK nanocomposites have been prepared by in situ synthesis method where hyperbranched poly(aryl ether ketone) with different branch degree as the ligand. The structure identifications of HPAEK and CdS/HPAEK nanocomposites were carried out by fourier transform infrared spectrometer (FT-IR) and nuclear magnetic resonance (NMR). The particle size and distribution of CdS in HPAEK matrix were determined by high resolution transmission electron microscopy (HRTEM). The thermal properties of HPAEK and CdS/HPAEK nanocomposites have been evaluated using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Optical properties of CdS/HPAEK nanocomposites have been discussed in terms of HPAEK polymer matrix with different branch degree, which were carried out by UV–Vis absorption and photoluminescence spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A.P. Alivisatos, Science. 27, 1933–1997 (1996)

    Google Scholar 

  2. A.H. Mueller, M.A. Petruska, M. Achermann, D.J. Werder, E.A. Akhadov, D.D. Koleske, M.A. Hoffbauer, V.I. Klimov, Nano. Lett. 5, 1039–1044 (2005)

    Article  Google Scholar 

  3. P.K.K. Kumarasinghe, A. Dissanayake, B.M.K. Pemasiri, B.S. Dassanayake, J. Mater. Sci-Mater. El. 28, 276–283 (2017)

    Article  Google Scholar 

  4. C. Burda, X. Chen, R. Narayanan, M.A. El-Sayed, Chem. Rev. 105, 1025–1102 (2005)

    Article  Google Scholar 

  5. X. Fang, T. Zhai, U.K. Gautam, L. Li, L. Wua, Y. Bando et al., Prog. Mater Sci. 56, 175–287 (2011)

    Article  Google Scholar 

  6. M. Bruchez, M. Moronne, P. Gin, S. Weiss, A.P. Alivisatos, Science. 281, 2013–2016 (1998)

    Article  Google Scholar 

  7. H. Liu, J.T. Feng, W.Q. Jie, J. Mater. Sci-Mater. El. 28, 16585–16597 (2017)

    Article  Google Scholar 

  8. X.G. Yang, D.H. Bao, Y. Zhang, B.J. Li, ACS Photonics. 3, 1256–1264 (2016)

    Article  Google Scholar 

  9. H. Zhu, Y. Wang, C. Chen, M.R. Ma, J.F. Zeng, S.Z. Li, Y.S. Xia, M.Y. Gao, ACS Nano. 11, 8273–8281 (2017)

    Article  Google Scholar 

  10. J. Lim, M. Park, W.K. Bae, D. Lee, S. Lee, C. Lee, K. Char, ACS Nano. 7, 9019–9026 (2013)

    Article  Google Scholar 

  11. L.H. Jing, K. Ding, S. Kalytchuk, Y. Wang, R. Qiao, S.V. Kershaw, A.L. Rogach, M.Y. Gao, J. Phys. Chem. C 117, 18752–18761 (2013)

    Article  Google Scholar 

  12. L. Zhou, C. Gao, X.Z. Hu, W.J. Xu, Chem. Mater. 23, 1461–1470 (2011)

    Article  Google Scholar 

  13. H.F. Bao, N. Hao, Y.X. Yang, D.Y. Zhao, Nano. Res. 3, 481–489 (2010)

    Article  Google Scholar 

  14. X. Hu, L. Zhou, C. Gao, Colloid. Polym. Sci. 289, 1299–1320 (2011)

    Article  Google Scholar 

  15. Z. Li, W. Wu, C. Ye, J. Qin, Z. Li, Polymer. 53, 153–160 (2012)

    Article  Google Scholar 

  16. J.M.J. Fréchet, Science. 263, 1710–1715 (1994)

    Article  Google Scholar 

  17. S. Kosmella, J. Venus, J. Hahn, C. Prietzel, J. Koetz, Chem. Phys. Lett. 592, 114–119 (2014)

    Article  Google Scholar 

  18. L. Zhu, Y. Shi, C. Tu, R. Wang, Y. Pang, F. Qiu, X. Zhu, D. Yan, L. He, C. Jin, B. Zhu, Langmuir. 26, 8875–8881 (2010)

    Article  Google Scholar 

  19. D. Wan, Q. Fu, J. Huang, J. Appl. Polym. Sci. 102, 3679–3684 (2006)

    Article  Google Scholar 

  20. Y. Zhang, X. Hu, D. Jiang, Plast. Rubber. Compos. 46, 1–8 (2017)

    Article  Google Scholar 

  21. M. Strukelj, A.S. Hay, Macromolecules 24, 6870–6871 (1991)

    Article  Google Scholar 

  22. X.J. Li, S.L. Zhang, H. Wang et al., Polym. Lnt. 59, 1360–1366 (2010)

    Google Scholar 

  23. C.F. Shu, C.M. Leu, Macromolecules 32, 100–105 (1999)

    Article  Google Scholar 

  24. Y.M. Chen, X.L. Ji, S.C. Jiang et al., Colloid. Polym. Sci. 281, 386–389 (2003)

    Article  Google Scholar 

Download references

Funding

This work was financially supported by Science and technology innovation fund of Changchun University of Science and Technology (XJJLG-2015-13) and Education Department of Liaoning Province (LJZ2016002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinan Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Liu, H. & Yu, Y. Effect of the degree of branching of hyperbranched poly(aryl ether ketone) template on the properties of self-assembled CdS nanocrystals. J Mater Sci: Mater Electron 29, 11910–11919 (2018). https://doi.org/10.1007/s10854-018-9292-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9292-9

Navigation