Skip to main content
Log in

Physical properties and inclusion interactions of new stilbazolium salts: experimental versus theoretical study

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

The experimental and theoretical spectroscopic and spectrometric elucidation in solid-state and gas-phase on the interacting ionic species of applied oriented synthetic derivatives on the base of the stilbazolium salts as molecular template was reported. The correlation between the molecular structure, and vibrational properties within THz-regime (10-0.3 THz) was performed. The collective vibrations, and gas-phase stabilized ionic species were comprehensive studied by the Raman spectroscopy and matrix-assisted laser desorption/ionization mass spectrometry, using the embedded organic dyes in host matrixes. The performed solid-state quantum chemical calculations contributed to further understanding of the nature of the guest–host interacting systems as well as to explain the observed optical phenomena within the THz-region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5

Similar content being viewed by others

References

  1. Bosshard, Ch., Hulliger, J., Florsheimer, M., Günter, P.: Organic Nonlinear Optical Materials, Advances in Nonlinear Optics. Gordon and Breach Science Publishers S.A., Basel (1993)

    Google Scholar 

  2. Zyss, J. (ed.): Molecular Nonlinear Optics: Material Physics and Devices, Chap 4. Academic Press INC, San Diego (1993)

  3. Nalwa, H., Watanabe, T., Miyata, S. (eds.): Nonlinear Optics of Organic Molecules and Polymers, p. 89. CRC Press, Boca Raton (1997)

  4. Coe, B.: Switchable nonlinear optical metallochromophores with pyridinium electron acceptor groups. Acc. Chem. Rev. 39, 383 (2006)

    Article  CAS  Google Scholar 

  5. Reetz, M., Hoger, S., Harris, K.: Proton-transfer-dependent reversible phase changes in the 4,4′-bipyridinium salt of squaric acid. Angew. Chem. Int. Ed. 33, 181 (1994)

    Article  Google Scholar 

  6. Würthner, F., Schmidt, J., Stolte, M., Wortmann, R.: Hydrogen-bond-directed head-to-tail orientation of dipolar merocyanine dyes: A strategy for the design of electrooptical materials. Angew. Chem. Int. Ed. 45, 3842 (2006)

    Article  Google Scholar 

  7. Wolff, J., Wortmann, R.: Organic materials for second-order non-linear optics. Adv. Phys. Org. Chem. 32, 121 (1999)

    Article  CAS  Google Scholar 

  8. Marder, S., Perry, J., Schaefer, W.: Synthesis of organic salts with large second-order optical nonlinearities. Science 245, 626 (1989)

    Article  CAS  Google Scholar 

  9. Papadopoulos, M., Leszczynski, J., Sadlej, J.: Nonlinear Optical Properties of Matter: From Molecules to a Condensed Phases. Kluwer, Dordrecht (2006)

    Google Scholar 

  10. Coe, B., Fielden, J., Foxon, S., Harris, J., Helliwell, M., Brunschwig, B., Asselberghs, C.I., Garin, J., Orduna, J.: Diquat derivatives: Highly active, two-dimensional nonlinear optical chromophores with potential redox switchability. J. Am. Chem. Soc. 132, 10498 (2010)

    Article  CAS  Google Scholar 

  11. Wampler, R., Moad, A., Moad, C., Heiland, R., Simpson, G.: Visual methods for interpreting optical nonlinearity at the molecular level. Acc. Chem. Res. 40, 953 (2007)

    Article  CAS  Google Scholar 

  12. Sullivan, P., Dalton, L.: Theory-inspired development of organic electro-optic materials. Acc. Chem. Res. 43, 10 (2010)

    Article  CAS  Google Scholar 

  13. Ward, M.: Chemistry: Molecular socks in a drawer. Nature 449, 149 (2007)

    Article  CAS  Google Scholar 

  14. Haag, R., Vögtle, F.: Highly branched macromolecules at the interface of chemistry, biology, physics, and medicine. Angew. Chem. Int. Ed. 43, 272 (2004)

    Article  CAS  Google Scholar 

  15. Holman, K., Pivovar, A., Ward, M.: Engineering crystal symmetry and polar order in molecular host frameworks. Science 2001, 294 (1907)

    Google Scholar 

  16. Goodson III, T.: Optical excitations in organic dendrimers investigated by time-resolved and nonlinear optical spectroscopy. Acc. Chem. Res. 38, 99 (2005)

    Article  CAS  Google Scholar 

  17. Ivanova, B., Spiteller, M.: Noncentrosymmetric crystals with marked nonlinear optical properties. J. Phys. Chem. A 114, 5099 (2010)

    Article  CAS  Google Scholar 

  18. Ivanova, B., Spiteller, M.: Possible application of the organic barbiturates as NLO materials. Cryst. Growth Des. 10, 2470 (2010)

    Article  CAS  Google Scholar 

  19. Inerbaev, T., Gu, F., Mizuseki, H., Kawasoe, Y.: Theoretical study of solvent effect on the structure, first electronic excited state, and nonlinear optical properties of substituted stilbazolium cations. Int. J. Quant. Chem. 111, 780 (2011)

    Article  CAS  Google Scholar 

  20. Jaquemin, D., Perpete, E., Cioini, I., Adamo, C.: Accurate simulation of optical properties in dyes. Acc. Chem. Res. 42, 326 (2009)

    Article  Google Scholar 

  21. Zhao, Y., Fu, F., Peng, H., Ma, Y., Liao, Q., Yao, J.: Construction and optoelectronic properties of organic one-dimensional nanostructures. Acc. Chem. Res. 43, 409 (2010)

    Article  CAS  Google Scholar 

  22. Kang, H., Facchetti, A., Zhu, P., Jiang, H., Yang, Y., Cariati, E., Righetto, S., Ugo, P., Zuccaccia, C., Macchioni, A., Stern, C., Liu, Z., Ho, S., Marks, J.: Exceptional molecular hyperpolarizabilities in twisted π-electron system chromophores. Angew. Chem. Int. Ed. 44, 7922 (2005)

    Article  CAS  Google Scholar 

  23. Hrobarik, P., Sigmundova, I., Zahradnık, P., Kasak, P., Arion, V., Franz, E., Clays, K.: Molecular engineering of benzothiazolium salts with large quadratic hyperpolarizabilities: Can auxiliary electron-withdrawing groups enhance nonlinear optical responses? J. Phys. Chem. C 114, 22289 (2010)

    Article  CAS  Google Scholar 

  24. Pan, F., Wong, M., Gramlich, V., Bosshard, Ch., Günter, P.: A novel and perfectly aligned highly electro-optic organic cocrystal of a merocyanine dye and 2,4-dihydroxybenzaldehyde. J. Am. Chem. Soc. 118, 6315 (1996)

    Article  CAS  Google Scholar 

  25. Yang, Z., Wörle, M., Mutter, L., Jazbinsek, M., Günter, P.: Synthesis, crystal structure, and second-order nonlinear optical properties of new stilbazolium salts. Cryst. Growth Des. 7, 83 (2006)

    Article  Google Scholar 

  26. Pan, F., Wong, M., Bosshard, Ch., Günter, P.: Crystal growth and characterization of the organic salt 4-N,N-dimethylamino-4′-N-methyl-stilbazolium tosylate (dast). Adv. Mater. 8, 592 (1996)

    Article  CAS  Google Scholar 

  27. Adachi, H., Takahashi, Y., Yabuzaki, J., Mori, Y., Sasaki, T.: J. Cryst. Growth 198(199), 568 (1999)

    Article  Google Scholar 

  28. Okada, S., Masaki, A., Matsuda, H., Nakanishi, H., Kato, M., Muramatsu, R., Otsuka, M.: Organic salts with large second-order optical nonlinearities. Jpn. J. Appl. Phys. 29, 1112 (1990)

    Article  CAS  Google Scholar 

  29. Coe, B., Harris, J., Asselberghs, I., Wostyn, K., Clays, K., Persoons, A., Brunschwig, B., Coles, S., Gelbrich, T., Light, M., Hursthouse, M., Nakatani, M.: Quadratic optical nonlinearities of N-methyl and N-aryl pyridinium salts. Adv. Funct. Mater. 13, 347 (2003)

    Article  CAS  Google Scholar 

  30. Soegiarto, A., Comotti, A., Ward, M.: Controlled orientation of polyconjugated guest molecules in tunable host cavities. J. Am. Chem. Soc. 132, 14603 (2010)

    Article  CAS  Google Scholar 

  31. Lamshoeft, M., Storp, J., Ivanova, B., Spiteller, M.: Structural and spectroscopic study of novel Ag(I) metal-organic complexes with dyes—experimental vs. theoretical methods. Inorg. Chim. Acta 382, 96 (2012)

    Article  CAS  Google Scholar 

  32. Frisch, M., Trucks G., Schlegel, H., Scuseria, G., Robb, M., Cheeseman, J., Zakrzewski, V., Montgomery, Jr. J., Stratmann, R., Burant, J., Dapprich, S., Millam, J., Daniels, A., Kudin, K., Strain, M., Farkas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C., Clifford, S., Ochterski, J., Petersson, G., Ayala, P., Cui, Q., Morokuma, K., Malick, D., Rabuck, A.D., Raghavachari, K., Foresman, J., Cioslowski, J., Ortiz, J., Stefanov, B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Gomperts, R., Martin, R., Fox, D., Keith, T., Al-Laham, M., Peng, C., Nanayakkara, A., Gonzalez, C., Challacombe, M., Gill, P., Johnson, B., Chen, W., Wong, M., Andres, J., Gonzalez, C., Head-Gordon, M., Replogle, E., Pople, J.: Gaussian 09, Revision A.3, Gaussian Inc., Pittsburgh (2009)

  33. Dalton 2.0 Program Package. http://www.kjemi.uio.no/software/dalton/dalton.html

  34. GausView03. http://www.softwarecientifico.com/paginas/gaussian.htm

  35. Zhao, Y., Truhlar, D.: Density functionals with broad applicability in chemistry. Acc. Chem. Res. 41, 157 (2008)

    Article  CAS  Google Scholar 

  36. Zhao, Y., Truhlar, D.: The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120, 215 (2008)

    Article  CAS  Google Scholar 

  37. Jensen, F.: Introduction to Computational Chemistry. Wiley, New York (1999)

    Google Scholar 

  38. Hehre, V., Radom, L., Schleyer, P., Pople, J.: Ab Initio Molecular Orbital Theory. Wiley, New York (1986)

    Google Scholar 

  39. Woon, D., Dunning, T.: Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J. Chem. Phys. 98, 1358 (1993)

    Article  CAS  Google Scholar 

  40. Foresman, J., Head-Gordon, M., Pople, J., Frisch, M.: Toward a systematic molecular orbital theory for excited states. J. Phys. Chem. 96, 135 (1992)

    Article  CAS  Google Scholar 

  41. Wiberg, K., Hadad, C., Foresman, J., Chupka, W.: Electronically excited states of ethylene. J. Phys. Chem. 96, 10756 (1992)

    Article  CAS  Google Scholar 

  42. Bauernschmitt, R., Ahlrichs, R.: Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem. Phys. Lett. 256, 454 (1996)

    Article  CAS  Google Scholar 

  43. Ivanova, B.: Solid-state Raman spectra of non-centrosymmetric crystals—theoretical vs. experimental study towards an application in THz-regime. J. Mol. Struct. 1016, 47 (2012)

    Article  CAS  Google Scholar 

  44. Ivanova, B., Spiteller, M.: On the chemical identification and determination of flavonoids in solid-state. Talanta 94, 9 (2012)

    Article  CAS  Google Scholar 

  45. Ivanova, B., Spiteller, M.: Physical optical properties and crystal structures of organic 5-sulfosalicylates: Theoretical and experimental study. J. Mol. Struct. 1003, 1 (2011)

    Article  CAS  Google Scholar 

  46. Oppenheim, K., Korter, T., Melinger, J., Grischkowsky, D.: Solid-state density functional theory investigation of the terahertz spectra of the structural isomers 1,2-dicyanobenzene and 1,3-dicyanobenzene. J. Phys. Chem. A 114, 12513 (2010)

    Article  CAS  Google Scholar 

  47. Harsha, S., Grischkowsky, D.: Terahertz (far-infrared) characterization of tris(hydroxymethyl)aminomethane using high-resolution waveguide THz-TDS. J. Phys. Chem. A 114, 3489 (2010)

    Article  CAS  Google Scholar 

  48. http://de.openoffice.org/

  49. Stephens, P., McCann, D., Cheeseman, J., Frisch, M.: Determination of absolute configurations of chiral molecules using ab initio time-dependent density functional theory calculations of optical rotation: How reliable are absolute configurations obtained for molecules with small rotations? Chirality 17, S52 (2005)

    Article  CAS  Google Scholar 

  50. Stephens, P., Devlin, F., Cheeseman, J., Frisch, M., Bortolini, O., Besse, P.: Determination of absolute configuration using ab initio calculation of optical rotation. Chirality 15, S57 (2003)

    Article  CAS  Google Scholar 

  51. Yildiz, A., Selvin, P.: Fluorescence imaging with one nanometer accuracy:  Application to molecular motors. Acc. Chem. Res. 38, 574 (2005)

    Article  CAS  Google Scholar 

  52. Koleva, B., Kolev, T., Lamshöft, M., Mayer-Figge, H., Sheldrick, W., Spiteller, M.: Synthesis, spectroscopic and structural elucidation of 1-butyl-4-[2-(3,5-dimethoxy-4-hydroxyphenyl)ethenyl)]pyridinium chloride tetrahydrate. Spectrochim. Acta 74A, 1120 (2009)

    CAS  Google Scholar 

  53. Dalton, G., Cifuentes, M., Petrie, S., Stranger, R., Humphrey, M., Samoc, M.: Highly Efficient Ru−Pseudohalide Catalysts for Olefin Metathesis. J. Am. Chem. Soc. 127, 11882 (2007)

    Article  Google Scholar 

  54. Kim, P., Jeong, J., Jazbinsek, M., Kwon, S., Yun, H., Kim, J., Lee, Z., Baek, I., Rotermund, F., Günter, P., Kwon, O.: Acentric nonlinear optical N-benzyl stilbazolium crystals with high environmental stability and enhanced molecular nonlinearity in solid state. Cryst. Eng. Comm. 13, 444 (2011)

    Article  CAS  Google Scholar 

  55. Würthner, F., Yao, S., Debaerdemaeker, T., Wortmann, R.: Dimerization of Merocyanine Dyes. Structural and Energetic Characterization of Dipolar Dye Aggregates and Implications for Nonlinear Optical Materials. J. Am. Chem. Soc. 124, 9431 (2002)

    Article  Google Scholar 

  56. Würthner, F., Wortmann, R., Meerholz, K.: Chromophore Design for Photorefractive Organic Materials. ChemPhysChem 3, 17 (2002)

    Article  Google Scholar 

  57. Würthner, F., Archetti, G., Schmidt, R., Kuball, H.: Solvent Effect on Color, Band Shape, and Charge-Density Distribution for Merocyanine Dyes Close to the Cyanine Limit. Angew. Chem. Int. Ed. 47, 4529 (2008)

    Article  Google Scholar 

  58. Kolev, T., Wortmann, R., Spiteller, M., Sheldrick, W., Heller, M.: 4-Hydroxy-3,5-dimethoxybenzaldehyde (syringaldehyde). Acta Cryst. E60, o1387 (2004)

    Google Scholar 

  59. Espinosa, E., Wyncke, B., Brahat, F., Gerbaux, X., Veintemillas, S., Molins, E.: Infrared vibrational spectra of l-histidinium dihydrogen orthophosphate orthophosphoric acid (LHP). Infrared Phys. Techn. 38, 449 (1997)

    Article  CAS  Google Scholar 

  60. Ohno, K., Nomura, S., Yoshida, H., Matsuura, H.: Conformational analysis of alkylamino chains using isolated C–D stretching vibrations. Spectrochim. Acta 55A, 2231 (1999)

    CAS  Google Scholar 

  61. Bugueno-Hoffmann, R., Romaint, F., Pasquier, B.: Raman and far-infrared study of the polar single crystals of 3-(4-chlorophenyl)-2-cyanopropenonitrile. J. Raman Spectrosc. 19, 101 (1988)

    Article  CAS  Google Scholar 

  62. Lefebvre, J., Fontaine, H., Fouret, R.: Raman scattering of lattice vibrations in H4-urea and D4-urea. J. Raman Spectrosc. 4, 173 (1975)

    Article  CAS  Google Scholar 

  63. H Schobert, D Strauch, Investigation of the LO-TO splitting in complex binary crystals. J. Phys.: Condens. Mater. 1993, 5, 6165

    Google Scholar 

  64. Lamshöft, M., Storp, J., Ivanova, B., Spiteller, M.: Gas-phase CT-stabilized Ag(I) and Zn(II) metal–organic complexes—Experimental versus theoretical study. Polyhedron 30, 2564 (2011)

    Article  Google Scholar 

  65. Ivanova, B., Spiteller, M.: AgI and ZnII complexes with possible application as NLO materials—Crystal structures and properties. Polyhedron 30, 241 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Deutscher Akademischer Austausch Dienst (DAAD), for a grant within the priority program “Stability Pact South-Eastern Europe” and gratefully thank the Deutsche Forschungsgemeinschaft (DFG) for Grants SPP 255/21-1 and SPP/22-1. The authors also thank the central instrumental laboratories for structural analysis at Technical University Dortmund (TUD, Germany) and the analytical and computational laboratories at the Institute of Environmental Research (INFU) at the TUD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bojidarka Ivanova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stolle, C., Ivanova, B. & Spiteller, M. Physical properties and inclusion interactions of new stilbazolium salts: experimental versus theoretical study. J Incl Phenom Macrocycl Chem 76, 75–85 (2013). https://doi.org/10.1007/s10847-012-0175-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-012-0175-z

Keywords

Navigation