Skip to main content
Log in

Selective complexation of alkali metal ions using crown ethers derived from calix[4]arenes: a computational investigation of the structural and energetic factors

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

A systematic analysis of the structural, energetic, and thermodynamic factors involved in alkali metal (i.e., Na+, K+, Rb+, and Cs+) complexation by four calix[4]arene crown-6 ethers in the 1,3-alternate conformation is presented here. The ligands (or hosts) in this work are identical to, or closely related to, the four molecules whose selectivity towards complexing Na+, K+, Rb+, and Cs+ from aqueous solutions was studied experimentally by Casnati et al. (Tetrahedron 60(36):7869–7876, 2004). By dividing the complexation process into three different contributions, namely, the binding energy of the ion to the crown, the elastic energy of the crown, and the solvation effect, it becomes clear that the primary factor that determines ion selectivity in crown-6-ethers is not the size of the crown, as currently believed. All four crown ethers preferentially complex with the smallest ion (Na+) in the gas phase. In the condensed phase, these crown-6 ethers preferentially complex with the larger ions only because the aqueous solvation energies of the alkali metal ions make it thermodynamically less favorable to extract the smaller ions from aqueous solutions. This suggests that the current understanding of the factors influencing the selectivity of metal ion complexation by crown ethers may be in need of revision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Asfari, M.Z., Böhmer, V., Harrowfield, J., Vicens, J.: Calixarenes 2001. Kluwer Academic Publishers, Dordrecht (2001)

    Google Scholar 

  2. Salorinne, K., Nissinen, M.: Calixcrowns: synthesis and properties. J. Incl. Phenom. Macrocycl. Chem. 61(1–2), 11–27 (2008)

    Article  CAS  Google Scholar 

  3. Arnaud-Neu, F., Schwing-Weill, M.J., Dozol, J.F.: Calixarenes for nuclear waste treatment. In: Asfari, M.Z., Böhmer, V., Harrowfield, J., Vicens, J. (eds.) Calixarenes 2001, pp. 642–662. Kluwer Academic Publishers, Dordrecht (2001)

    Google Scholar 

  4. PUREX Process. http://www.euronuclear.org/info/encyclopedia/p/purex-process.htm. Accessed 1 May 2012

  5. Hill, C., Dozol, J.F., Lamare, V., Rouquette, H., Eymard, S., Tournois, B., Vicens, J., Asfari, Z., Bressot, C., Ungaro, R., Casnati, A.: Nuclear waste treatment by means of supported liquid membranes containing calixcrown compounds. J. Inclusion Phenom. Mol. Recognit. Chem. 19(1–4), 399–408 (1994)

    CAS  Google Scholar 

  6. Casnati, A., Ca, N.D., Sansone, F., Ugozzoli, F., Ungaro, R.: Enlarging the size of calix[4]arene-crowns-6 to improve Cs+/K+ selectivity: a theoretical and experimental study. Tetrahedron 60(36), 7869–7876 (2004)

    Article  CAS  Google Scholar 

  7. Golebiowski, J., Lamare, V., Ruiz-López, M.F.: Quantum chemical calculations on alkali metal complexes. In: Asfari, M.Z., Böhmer, V., Harrowfield, J., Vicens, J. (eds.) Calixarenes 2001, pp. 334–345. Kluwer Academic Publishers, Dordrecht (2001)

    Google Scholar 

  8. Schatz, J., Backes, A.C., Siehl, H.U.: Geometry and GIAO-DFT chemical shift calculations of calixarene complexes-the inclusion of carbon disulfide in p-tert-butylcalix[4]arene. J. Chem. Soc. Perkin Trans. 2(4), 609–610 (2000)

    Google Scholar 

  9. Hay, B.P., Nicholas, J.B., Feller, D.: Novel binding modes in tetramethoxycalix[4]arene: implications for ligand design. J. Am. Chem. Soc. 122(41), 10083–10089 (2000)

    Article  CAS  Google Scholar 

  10. Çiçek, B., Yildiz, A.: Synthesis, metal ion complexation and computational studies of thio oxocrown ethers. Molecules 16(10), 8670–8683 (2011)

    Article  Google Scholar 

  11. Çiçek, B., Çakir, Ü., Azizoglu, A.: The associations of macrocyclic ethers with cations in 1,4-dioxane/water mixtures; potentiometric Na+ and K+ binding measurements and computational study. J. Incl. Phenom. Macrocycl. Chem. 72(1), 121–125 (2012). doi:10.1007/s10847-011-9949-y

    Article  Google Scholar 

  12. Rozhenko, A.B., Schoeller, W.W., Letzel, M.C., Decker, B., Agena, C., Mattay, J.: Conformational features of calix[4]arenes with alkali metal cations: a quantum chemical investigation with density functional theory. J. Mol. Struct. (Thoechem) 732(1–3), 7–20 (2005)

    Article  CAS  Google Scholar 

  13. Ilchenko, N.N., Kuchma, O.V., Zub, Y.L., Leszczynski, J.: Cesium cation complexation by 25,27-dihydroxycalix[4]arene-crown-6: computational study. J. Mol. Struct. (Thoechem) 815(1–3), 83–86 (2007)

    Article  CAS  Google Scholar 

  14. Wipff, G.: Molecular dynamics of cation complexation and extraction. In: Asfari, M.Z., Böhmer, V., Harrowfield, J., Vicens, J. (eds.) Calixarenes 2001, pp. 312–333. Kluwer Academic Publishers, Dordrecht (2001)

    Google Scholar 

  15. Sieffert, N., Chaumont, A., Wipff, G.: Importance of the liquid–liquid interface in assisted ion extraction: new molecular dynamics studies of cesium picrate extraction by a calix[4]arene. J. Phys. Chem. C 113(24), 10610–10622 (2009)

    Article  CAS  Google Scholar 

  16. Sieffert, N., Wipff, G.: Alkali cation extraction by calix[4]crown-6 to room-temperature ionic liquids. The effect of solvent anion and humidity investigated by molecular dynamics simulations. J. Phys. Chem. A 110(3), 1106–1117 (2006)

    Article  CAS  Google Scholar 

  17. Sieffert, N., Wipff, G.: Comparing an ionic liquid to a molecular solvent in the cesium cation extraction by a calixarene: a molecular dynamics study of the aqueous interfaces. J. Phys. Chem. B 110(39), 19497–19506 (2006)

    Article  CAS  Google Scholar 

  18. Sieffert, N., Wipff, G.: The effect of a solvent modifier in the cesium extraction by a calix[4]arene: a molecular dynamics study of the oil phase and the oil–water interface. Phys. Chem. Chem. Phys. 9(28), 3763–3775 (2007)

    Article  CAS  Google Scholar 

  19. Becke, A.D.: A new mixing of Hartree–Fock and local density-functional theories. J. Chem. Phys. 98(2), 1372–1377 (1993)

    Article  CAS  Google Scholar 

  20. Perdew, J.P.: Unified theory of exchange and correlation beyond the local density approximation. In: Ziesche, P., Esching, H. (eds.) Electronic structure of solids ‘91. Akademic Verlag, Berlin (1991)

    Google Scholar 

  21. Perdew, J.P., Wang, Y.: Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45(23), 13244–13249 (1992)

    Article  Google Scholar 

  22. Schaefer, H.F.: Methods of electronic structure theory. Springer, New York (1977)

    Book  Google Scholar 

  23. Hay, P.J., Wadt, W.R.: Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys. 82(1), 270–283 (1985)

    Article  CAS  Google Scholar 

  24. Wadt, W.R., Hay, P.J.: Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J. Chem. Phys. 82(1), 284–298 (1985)

    Article  CAS  Google Scholar 

  25. Hay, P.J., Wadt, W.R.: Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 82(1), 299–310 (1985)

    Article  CAS  Google Scholar 

  26. Weigend, F., Ahlrichs, R.: Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7(18), 3297–3305 (2005)

    Article  CAS  Google Scholar 

  27. Dunning Jr, T.H.: Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90(2), 1007–1023 (1989)

    Article  CAS  Google Scholar 

  28. Kendall, R.A., Dunning Jr, T.H., Harrison, R.J.: Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 96(9), 6796–6806 (1992)

    Article  CAS  Google Scholar 

  29. Boys, S.F., Bernardi, F.: The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 19(4), 553–566 (1970)

    Article  CAS  Google Scholar 

  30. Tomasi, J., Mennucci, B., Cammi, R.: Quantum mechanical continuum solvation models. Chem. Rev. 105(8), 2999–3093 (2005)

    Article  CAS  Google Scholar 

  31. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, N.J., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09, Rev. A.1. In., p. Gaussian 09. Gaussian Inc., Wallingford, CT, (2009)

  32. Floris, F., Tomasi, J.: Evaluation of the dispersion contribution to the solvation energy. A simple computational model in the continuum approximation. J. Comput. Chem. 10(5), 616–627 (1989)

    Article  CAS  Google Scholar 

  33. Floris, F.M., Tomasi, J., Ahuir, J.L.P.: Dispersion and repulsion contributions to the solvation energy: refinements to a simple computational model in the continuum approximation. J. Comput. Chem. 12(7), 784–791 (1991)

    Article  CAS  Google Scholar 

  34. Pierotti, R.A.: A scaled particle theory of aqueous and nonaqueous solutions. Chem. Rev. 76(6), 717–726 (1976)

    Article  CAS  Google Scholar 

  35. Thompson, J.D., Cramer, C.J., Truhlar, D.G.: Predicting aqueous solubilities from aqueous free energies of solvation and experimental or calculated vapor pressures of pure substances. J. Chem. Phys. 119(3), 1661–1670 (2003)

    Article  CAS  Google Scholar 

  36. Pratt, L.M., Trần, P.T.T., Nguỹên, N.V., Ramachandran, B.: Cyclopropanation reactions of halomethyllithium carbenoids: a computational study of the effects of aggregation and solvation. Bull. Chem. Soc. Jpn. 82(9), 1107–1125 (2009)

    Article  CAS  Google Scholar 

  37. Helgeson, R.C., Weisman, G.R., Toner, J.L., Tarnowski, T.L., Chao, Y., Mayer, J.M., Cram, D.J.: Host–guest complexation. 18. Effects on cation binding of convergent ligand sites appended to macrocyclic polyethers. J. Am. Chem. Soc. 101(17), 4928–4941 (1979)

    Article  CAS  Google Scholar 

  38. Casnati, A., Pochini, A., Ungaro, R., Ugozzoli, F., Arnaud, F., Fanni, S., Schwing, M.J., Egberink, R.J.M., De Jong, F., Reinhoudt, D.N.: Synthesis, complexation, and membrane transport studies of 1,3-alternate calix[4]arene-crown-6 conformers: a new class of cesium selective ionophores. J. Am. Chem. Soc. 117(10), 2767–2777 (1995)

    Article  CAS  Google Scholar 

  39. Casnati, A., Sansone, F., Dozol, J.F., Rouquette, H., Arnaud-Neu, F., Byrne, D., Fuangswasdi, S., Schwing-Weill, M.J., Ungaro, R.: New calix[4]arene-monobenzo-and -dibenzo-crown-6 as cesium selective ionophores in the radioactive waste treatment: synthesis, complexation and extraction properties. J. Incl. Phenom. 41(1–4), 193–200 (2001)

    CAS  Google Scholar 

  40. Singh, U.C., Kollman, P.A.: An approach to computing electrostatic charges for molecules. J. Comput. Chem. 5(2), 129–145 (1984)

    Article  CAS  Google Scholar 

  41. Besler, B.H., Merz, K.M., Kollman, P.A.: Atomic charges derived from semiempirical methods. J. Comput. Chem. 11(4), 431–439 (1990)

    Article  CAS  Google Scholar 

  42. More, M.B., Ray, D., Armentrout, P.B.: Intrinsic affinities of alkali cations for 15-crown-5 and 18-crown-6: bond dissociation energies of gas-phase M +-crown ether complexes. J. Am. Chem. Soc. 121(2), 417–423 (1999)

    Article  CAS  Google Scholar 

  43. Ma, J.C., Dougherty, D.A.: The cation-π interaction. Chem. Rev. 97(5), 1303–1324 (1997)

    Article  CAS  Google Scholar 

  44. Kelly, C.P., Cramer, C.J., Truhlar, D.G.: Aqueous solvation free energies of ions and ion-water clusters based on an accurate value for the absolute aqueous solvation free energy of the proton. J. Phys. Chem. B 110(32), 16066–16081 (2006)

    Article  CAS  Google Scholar 

  45. Tissandier, M.D., Cowen, K.A., Feng, W.Y., Gundlach, E., Cohen, M.H., Earhart, A.D., Coe, J.V., Tuttle Jr, T.R.: The proton’s absolute aqueous enthalpy and Gibbs free energy of solvation from cluster-ion solvation data. J. Phys. Chem. A 102(40), 7787–7794 (1998)

    Article  CAS  Google Scholar 

  46. Fawcett, W.R.: Thermodynamic parameters for the solvation of monatomic ions in water. J. Phys. Chem. B 103(50), 11181–11185 (1999)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was done with the help of generous grants of computer time on the supercomputers of the Louisiana Optical Network Initiative (LONI). BRR is grateful to Professor Naresh Patwari for very helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Ramu Ramachandran.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 902 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramachandran, B.R., Baker, S.D., Suravajhula, G. et al. Selective complexation of alkali metal ions using crown ethers derived from calix[4]arenes: a computational investigation of the structural and energetic factors. J Incl Phenom Macrocycl Chem 75, 185–195 (2013). https://doi.org/10.1007/s10847-012-0160-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-012-0160-6

Keywords

Navigation