Skip to main content
Log in

Spectral modulation of a charge transfer reaction of 2-methoxy-4-(N,N-dimethylamino)benzaldehyde inside cyclodextrin nanocage

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

This article reports modulation of intramolecular charge transfer (ICT) reaction of 2-methoxy-4-(N,N-dimethylamino)benzaldehyde (2-MDMABA) encapsulated within the cyclodextrin nanocavities investigated by steady state and time resolved measurements. The ICT emission, absent in bulk water, originates in the presence of α-, β- and γ-CD with the huge enhancement of local emission. From the Benesi–Hildebrand plot, the stoichiometry of the host–guest inclusion complex is found to be 1:1 for β- and γ-CD whereas 1:1 and 1:2 guest to host complexation occur at low and high concentration of α-CD, respectively. The association constants of the inclusion complexes have also been estimated from the Benesi–Hildebrand plot. The greater binding capability of 2-MDMABA with β-CD than that of other two CDs is further supplemented by time resolved study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Douhal, A.: Ultrafast guest dynamics in cyclodextrin nanocavities. Chem. Rev. 104, 1955–1976 (2004)

    Article  CAS  Google Scholar 

  2. Del Valle, E.M.M.: Cyclodextrins and their uses: a review. Proc. Biochem. 39, 1033–1046 (2004)

    Article  CAS  Google Scholar 

  3. Szetjli, J.: Cyclodextrins and Their Inclusion Complexes. Academic Kiado, Budapest (1982)

    Google Scholar 

  4. Szetjli, J.: Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98, 1743–1753 (1998)

    Article  Google Scholar 

  5. Drexler, K.E.: Nanosystems: Molecular Machinery Manufacturing and Computation. Wiley, New York (1992)

    Google Scholar 

  6. Al-Hassan, K.A., Khanfer, M.F.: Fluorescence probes for cyclodextrin interiors. J. Fluoresc. 8, 139–152 (1998)

    Article  CAS  Google Scholar 

  7. Szetjli, J.: Cyclodextrin Technology. Kluwer Academic Publishers, Dordrecht (1988)

    Google Scholar 

  8. Villalonga, R., Cao, R., Fragoso, A.: Supramolecular chemistry of cyclodextrins in enzyme technology. Chem. Rev. 107, 3088–3116 (2007)

    Article  CAS  Google Scholar 

  9. D’Souza, V.T., Bender, M.L.: Miniature organic models of enzymes. Acc. Chem. Res. 20, 146–152 (1987)

    Article  Google Scholar 

  10. Kim, Y., Yoon, M., Kim, D.: Excited-state intramolecular proton transfer coupled-charge transfer of p-N,N-dimethylaminosalicylic acid in aqueous β-cyclodextrin solutions. J. Photochem. Photobiol. A Chem. 138, 167–175 (2001)

    Article  CAS  Google Scholar 

  11. Bender, M.L., Komiyama, M.: Cyclodextrin Chemistry. Springer, New York (1977)

    Google Scholar 

  12. Hedges, R.A.: Industrial application of cyclodextrins. Chem. Rev. 98, 2035–2044 (1998)

    Article  CAS  Google Scholar 

  13. Saenger, W.: Cyclodextrin inclusion compounds in research and industry. Angew. Chem. Int. Ed. Engl. 19, 344–362 (1980)

    Article  Google Scholar 

  14. Paul, B.K., Samanta, A., Guchhait, N.: Modulation of excited-state intramolecular proton transfer reaction of 1-hydroxy-2-napthaldehyde in different supramolecular assemblies. Langmuir 26, 3214–3224 (2010)

    Article  CAS  Google Scholar 

  15. Mitra, S., Das, R., Mukherjee, S.: Intramolecular proton transfer in inclusion complexes of cyclodextrins: role of water and highly polar nonaqueous media. J. Phys. Chem. B 102, 3730–3735 (1998)

    Article  CAS  Google Scholar 

  16. Mukhupadhyay, M., Banerjee, D., Mukherjee, S.: Proton-transfer reaction of 4-methyl 2,6-diformyl phenol in cyclodextrin nanocage. J. Phys. Chem. A 110, 12743–12751 (2006)

    Article  Google Scholar 

  17. Al-Hassan, K.A., Saleh, N., Abu-Abdoun, I.I., Yousef, Y.A.: Inclusion as a driving force for the intramolecular charge transfer (ICT) fluorescence of p-(N,N-diphenylamino)benzoic acid methyl ester (DPABME) in α-cyclodextrin (α-CD) aqueous solution. J. Incl. Phenom. Macrocycl. Chem. 61, 361–365 (2008)

    Article  CAS  Google Scholar 

  18. Chakraborty, A., Guchhait, N.: Inclusion complex of charge transfer probe 4-amino-3-methyl benzoic acid methyl ester (AMBME) with β-CD in aqueous and non-aqueous medium: medium dependent stoichiometry of the complex and orientation of probe molecule inside β-CD nanocavity. J. Incl. Phenom. Macrocycl. Chem. 62, 91–97 (2008)

    Article  CAS  Google Scholar 

  19. Das, P., Chakrabarty, A., Haldar, B., Mallick, A., Chattopadhyay, N.: Effect of cyclodextrin nanocavity confinement on the photophysics of a β-carboline analogue: a spectroscopic study. J. Phys. Chem. B 111, 7401–7408 (2007)

    Article  CAS  Google Scholar 

  20. Singh, R.B., Mahanta, S., Guchhait, N.: Spectral modulation of charge transfer fluorescence probe encapsulated inside aqueous and non-aqueous β-cyclodextrin nanocavities. J. Mol. Struct. 963, 92–97 (2010)

    Article  CAS  Google Scholar 

  21. Hamai, S.: Pyrene excimer formation in gamma-cyclodextrin solutions: association of 1:1 pyrene-gamma-cyclodextrin inclusion compounds. J. Phys. Chem. 93, 6527–6529 (1989)

    Article  CAS  Google Scholar 

  22. Hamai, S., Hatamiya, A.: Excimer formation in inclusion complexes of β-cyclodextrin with 1-alkylnaphthalenes in aqueous solutions. Bull. Chem. Soc. Jpn. 69, 2469–2476 (1996)

    Article  CAS  Google Scholar 

  23. Chakraborty, A., Kar, S., Guchhait, N.: Photoinduced intramolecular charge transfer reaction in (E)-3-(4-methylamino-phenyl)-acrylic acid methyl ester: A Fluorescence Study in Combination with TDDFT Calculation. J. Phys. Chem. A 110, 12089–12095 (2006)

    Article  CAS  Google Scholar 

  24. Mahanta, S., Singh, R.B., Kar, S., Guchhait, N.: Photoinduced intramolecular charge transfer in methyl ester of N,N′-dimethylaminonaphthyl-(acrylic)-acid: spectroscopic measurement and quantum chemical calculations. J. Photochem. Photobiol. A Chem. 194, 318–326 (2008)

    Article  CAS  Google Scholar 

  25. Rotkiewicz, K., Grellman, K.H., Grabowski, Z.R.: Reinterpretation of the anomalous fluorescense of p-n, n-dimethylamino-benzonitrile. Chem. Phys. Lett. 19, 315–318 (1973)

    Article  CAS  Google Scholar 

  26. Kosower, E.M., Dodiuk, H.: Multiple fluorescences. II. A new scheme for 4-(N,N-dimethylamino)benzonitrile including proton transfer. J. Am. Chem. Soc. 98, 924–929 (1976)

    Article  CAS  Google Scholar 

  27. Samanta, A., Paul, B.K., Mahanta, S., Singh, R.B., Kar, S., Guchhait, N.: Evidence of acid mediated enhancement of photoinduced charge transfer reaction in 2-methoxy-4-(N,N-dimethylamino)benzaldehyde: Spectroscopic and quantum chemical study. J. Photochem. Photobiol. A Chem. 212, 161–169 (2010)

    Article  CAS  Google Scholar 

  28. Kawski, A., Kukliński, B., Bojarski, P.: Excited state dipole moments of 4-(dimethylamino)benzaldehyde. Chem. Phys. Lett. 448, 208–212 (2007)

    Article  CAS  Google Scholar 

  29. Samanta, A., Paul, B. K., Guchhait, N.: Reinvestigation of photoinduced intramolecular charge transfer reaction in p-dimethylaminobenzaldehyde by spectroscopic method and density functional theory (DFT) calculation. J. Lumin. 132, 517–525 (2012)

    Google Scholar 

  30. Kundu, S., Chattopadhyay, N.: Twisted intramolecular charge transfer of dimethylaminobenzaldehyde in α-cyclodextrin cavity. J. Mol. Struc. 344, 151–155 (1995)

    Article  CAS  Google Scholar 

  31. Kundu, S., Chattopadhyay, N.: Dual luminescence of dimethylaminobenzaldehyde in aqueous β-cyclodextrin: non-polar and TICT emissions. J. Photochem. Photobiol. A Chem. 88, 105–108 (1995)

    Article  CAS  Google Scholar 

  32. Fischer, M., Georges, J.: Fluorescence quantum yield of rhodamine 6G in ethanol as a function of concentration using thermal lens spectrometry. Chem. Phys. Lett. 260, 115–118 (1996)

    Article  CAS  Google Scholar 

  33. Mandal, P., Kundu, S., Misra, T., Roy, S.K., Ganguly, T.: Effects of liquid crystal environment on the spectroscopic and photophysical properties of well-known reacting systems 2,3-dimethylindole (DMI) and 9-cyanoanthracene (9CNA). J. Phys. Chem. A 111, 11480–11486 (2007)

    Article  CAS  Google Scholar 

  34. Frisch, M.J., et al.: Gaussian 03, Revision B.03. Gaussian, Inc, Pittsburgh (2003)

    Google Scholar 

  35. Lackowicz, J.R.: Principles of Fluorescence Spectroscopy. Plenum Press, New York (2006)

    Book  Google Scholar 

Download references

Acknowledgments

This research is supported by DST, India (Project no. SR/S1/PC/26/2008). We appreciate the cooperation received from Prof. T. Ganguly IACS, Kolkata for his kind help in lifetime measurements. We are also thankful to A. Mallik and Dr. P. K. Maity, C. U., for their kind help in SEM measurements. AS and SJ thank CSIR and UGC for research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikhil Guchhait.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samanta, A., Jana, S. & Guchhait, N. Spectral modulation of a charge transfer reaction of 2-methoxy-4-(N,N-dimethylamino)benzaldehyde inside cyclodextrin nanocage. J Incl Phenom Macrocycl Chem 75, 57–68 (2013). https://doi.org/10.1007/s10847-012-0146-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-012-0146-4

Keywords

Navigation