Skip to main content
Log in

From intra- to inter-molecular hydrogen bonds with the surroundings: steady-state and timeresolved behaviours

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

We report on the photodynamics of 2-(2′-hydroxyphenyl)benzoxazole (HBO), compared to its amino derivatives, 6-amino-2-(2′-hydroxypheny)benzoxazole (6A-HBO) and 5-amino-2-(2′-hydroxypheny)- benzoxazole (5A-HBO) in N,N-dimethylformamide (DMF) solutions. HBO at S0 shows a reversible deprotonation reaction leading to the production of anionic forms. However, for 6A-HBO and 5A-HBO, DMF containing KOH is necessary to produce the anions. Excited HBO in DMF exhibits intra- as well as intermolecular proton transfer (ESIPT and ESPT) reactions. With excitation at 330 nm, we observed the openenol, anti-enol and keto forms with different emission and lifetimes (620 ps, 1.5 ns, and 74 ps, respectively), while with the excitation at 433 nm, only the anionic species emission was detected (3.7 ns). Contrary to HBO, 6A-HBO and 5A-HBO do not exhibit any proton transfer process, and only the emissions of the open-enol charge-transferred forms (open-ECT) were observed, which are comparable to those of their methylated derivatives (6A-MBO and 5A-MBO). Femtosecond studies of 6A-MBO and 6A-HBO in DMF indicate that an intramolecular charge-transfer (ICT) reaction (≈80 fs) and solvent relaxation process (2 ps) take place at S1. Remarkably, the photoinduced breaking of the intramolecular hydrogen bond of 6A-HBO and the formation of an intermolecular hydrogen bond with DMF molecules occurs in 80 ps, while for 5A-HBO, this process occurs in less than 10 ps. In this study, we have demonstrated that the presence and position of the amino group in the HBO framework change both the S0 and S1 behaviours of the intramolecular H-bonds; a result which might be useful for the design and better understanding of supramolecular systems based on intra- and intermolecular H-bonds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. J. Woolfe, M. Melzig, S. Schneider, F. Dörr, Chem. Phys., 1983, 77, 213–221.

    Article  CAS  Google Scholar 

  2. C. A. S. Potter, R. G. Brown, Chem. Phys. Lett., 1988, 153, 7–12.

    Article  CAS  Google Scholar 

  3. K. Das, N. Sarkar, D. Majumdar, K. Bhattacharyya, Chem. Phys. Lett., 1992, 198, 443–448.

    Article  CAS  Google Scholar 

  4. A. Douhal, F. Amat-Guerri, M. P. Lillo, A. U. Acuna, J. Photochem. Photobiol., A, 1994, 78, 127–138.

    Article  CAS  Google Scholar 

  5. M. A. Rios, M. C. Rios, J. Phys. Chem., 1995, 99, 12456–12460.

    Article  CAS  Google Scholar 

  6. D. P. Zhong, A. Douhal, A. H. Zewail, Proc. Natl. Acad. Sci. U. S. A., 2000, 97, 14056–14061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. P. Purkayastha, N. Chattopadhyay, Phys. Chem. Chem. Phys., 2000, 2, 203–210.

    Article  CAS  Google Scholar 

  8. O. K. Abou-Zied, R. Jimenez, E. H. Z. Thompson, D. P. Millar, F. E. Romesberg, J. Phys. Chem. A, 2002, 106, 3665–3672.

    Article  CAS  Google Scholar 

  9. H. Wang, H. Zhang, O. K. Abou-Zied, C. Yu, F. E. Romesberg, M. Glasbeek, Chem. Phys. Lett., 2003, 367, 599–608.

    Article  CAS  Google Scholar 

  10. M. Rini, J. Dreyer, E. T. J. Nibbering, T. Elsaesser, Chem. Phys. Lett., 2003, 374, 13–19.

    Article  CAS  Google Scholar 

  11. Y.-M. Cheng, S.-C. Pu, C.-J. Hsu, C.-H. Lai, P.-T. Chou, ChemPhysChem, 2006, 7, 1372–1381.

    Article  CAS  PubMed  Google Scholar 

  12. O. F. Mohammed, S. Luber, V. S. Batista, E. T. J. Nibbering, J. Phys. Chem. A, 2011, 115, 7550–7558.

    Article  CAS  PubMed  Google Scholar 

  13. O. K. Abou-Zied, Phys. Chem. Chem. Phys., 2012, 14, 2832–2839.

    Article  CAS  PubMed  Google Scholar 

  14. Y. Houari, S. Chibani, D. Jacquemin, A. D. Laurent, J. Phys. Chem. B, 2015, 119(6), 2180–2192.

    Article  CAS  PubMed  Google Scholar 

  15. N. Alarcos, B. Cohen, A. Douhal, J. Phys. Chem. C, 2014, 118, 19431–19443.

    Article  CAS  Google Scholar 

  16. P. Wnuk, G. Burdzinski, M. Sliwa, M. Kijak, A. Grabowska, J. Sepiol, J. Kubicki, Phys. Chem. Chem. Phys., 2014, 16, 2542–2552.

    Article  CAS  PubMed  Google Scholar 

  17. G. Zhang, H. Wang, Y. Yu, F. Xiong, G. Tang, W. Chen, Appl. Phys. B, 2003, 76, 677–681.

    Article  CAS  Google Scholar 

  18. O. K. Abou-Zied, Chem. Phys., 2007, 337, 1–10.

    Article  CAS  Google Scholar 

  19. M. Krishnamurthy, S. K. Dogra, J. Photochem., 1986, 32, 235–242.

    Article  CAS  Google Scholar 

  20. R. S. Becker, C. Lenoble, A. Zein, J. Phys. Chem., 1987, 91, 3509–3517.

    Article  CAS  Google Scholar 

  21. T. Elsaesser, B. Schmetzer, Chem. Phys. Lett., 1987, 140, 293–299.

    Article  CAS  Google Scholar 

  22. W. Frey, F. Laermer, T. Elsaesser, J. Phys. Chem., 1991, 95, 10391–10395.

    Article  CAS  Google Scholar 

  23. S. Lochbrunner, A. J. Wurzer, E. Riedle, J. Phys. Chem. A, 2003, 107, 10580–10590.

    Article  CAS  Google Scholar 

  24. S. M. Aly, A. Usman, M. AlZayer, G. A. Hamdi, E. Alarousu, O. F. Mohammed, J. Phys. Chem. B, 2015, 119(6), 2596–2603.

    Article  CAS  PubMed  Google Scholar 

  25. H. K. Sinha, S. K. Dogra, Chem. Phys., 1986, 102, 337–347.

    Article  CAS  Google Scholar 

  26. T. Elsaesser, W. Kaiser, Chem. Phys. Lett., 1986, 128, 231–237.

    Article  CAS  Google Scholar 

  27. A. P. Fluegge, F. Waiblinger, M. Stein, J. Keck, H. E. A. Kramer, P. Fischer, M. G. Wood, A. D. DeBellis, R. Ravichandran, D. Leppard, J. Phys. Chem. A, 2007, 111, 9733–9744.

    Article  CAS  PubMed  Google Scholar 

  28. C. H. Kim, J. Park, J. Seo, S. Y. Park, T. Joo, J. Phys. Chem. A, 2010, 114, 5618–5629.

    Article  CAS  PubMed  Google Scholar 

  29. C.-C. Hsieh, Y.-M. Cheng, C.-J. Hsu, K.-Y. Chen, P.-T. Chou, J. Phys. Chem. A, 2008, 112, 8323–8332.

    Article  CAS  PubMed  Google Scholar 

  30. M. Gutierrez, N. Alarcos, M. Liras, F. Sánchez, A. Douhal, J. Phys. Chem. B, 2015, 119, 552–562.

    Article  CAS  PubMed  Google Scholar 

  31. N. Alarcos, M. Gutiérrez, M. Liras, F. Sánchez, A. Douhal, Phys. Chem. Chem. Phys., 2015 10.1039/C5CP00577A.

    Google Scholar 

  32. N. Alarcos, M. Gutiérrez, M. Liras, F. Sánchez, M. Moreno, A. Douhal, Phys. Chem. Chem. Phys., 2015, 17(22), 14569–14581.

    Article  CAS  PubMed  Google Scholar 

  33. A. Douhal, M. Sanz, M. A. Carranza, J. A. Organero, L. Santos, Chem. Phys. Lett., 2004, 394, 54–60.

    Article  CAS  Google Scholar 

  34. A. D. Roshal, J. A. Organero, A. Douhal, Chem. Phys. Lett., 2003, 379, 53–59.

    Article  CAS  Google Scholar 

  35. J. Seo, S. Kim, S. Y. Park, J. Am. Chem. Soc., 2004, 126, 11154–11155.

    Article  CAS  PubMed  Google Scholar 

  36. M. J. Kamlet, J. L. M. Abboud, M. H. Abraham, R. W. Taft, J. Org. Chem., 1983, 48, 2877–2887.

    Article  CAS  Google Scholar 

  37. R. A. Velapoldi, K. D. Mielenz, Appl. Opt., 1981, 20, 1718–1718.

    Article  Google Scholar 

  38. J. A. Organero, L. Tormo, A. Douhal, Chem. Phys. Lett., 2002, 363, 409–414.

    Article  CAS  Google Scholar 

  39. M. Gil, A. Douhal, Chem. Phys. Lett., 2006, 428, 174–177.

    Article  CAS  Google Scholar 

  40. E. L. Roberts, J. Dey, I. M. Warner, J. Phys. Chem., 1996, 100, 19681–19686.

    Article  CAS  Google Scholar 

  41. M. L. Horng, J. A. Gardecki, A. Papazyan, M. Maroncelli, J. Phys. Chem., 1995, 99, 17311–17337.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abderrazzak Douhal.

Additional information

Electronic supplementary information (ESI) available: Reversible model explanation and thermodynamic constants calculations (ΔH°, ΔS° and ΔG°); Fig. S1 shows the emission fluorescence spectra for HBO in DMF and DMF/KOH solutions; Fig. S2 is the emission spectra for 6A-MBO, 6A-HBO, 5A-MBO, and 5A-HBO in neutral water solution; Fig. S3 and S4 present the UV-visible absorption and emission spectra for 5A-HBO in different pH solutions; Fig. S5 and S6 display the UV-visible absorption and fluorescence spectra for 6A-MBO and 5A-MBO in DMF and DMF/KOH solutions, respectively; Fig. S7 and S8 show the excitation fluorescence and absorption spectra for HBO, 6A-HBO, 6A-MBO, 5A-HBO and 5A-MBO in DMF and DMF/KOH solutions, respectively; Fig. S9 presents the magic-angle emission decay for 6A-HBO in DMF solution; Fig. S10 and S11 show the UV-visible absorption and fluorescence spectra for HBO and 5A-HBO in DMF solution upon fs-pulse irradiation; Fig. S12–S17 give the 1H (A) and 13C (B) NMR spectra of the different molecules in DMSO-d6. See DOI: 10.1039/c5pp00079c

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alarcos, N., Gutiérrez, M., Liras, M. et al. From intra- to inter-molecular hydrogen bonds with the surroundings: steady-state and timeresolved behaviours. Photochem Photobiol Sci 14, 1306–1318 (2015). https://doi.org/10.1039/c5pp00079c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c5pp00079c

Navigation