Skip to main content

Advertisement

Log in

Effect of external factors on the curcumin/2-hydroxypropyl-β-cyclodextrin: in vitro and in vivo study

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

The effect of 2-hydroxypropyl-β-cyclodextrin (HPβCD) on solubility, stability and oral bioavailability of curcumin by external factors adjustment, was investigated with an aim of a simple, stable and effective formulation. The phase solubility studies showed the solubility of curcumin increased slightly with increasing pH. However, the apparent stability constant (K S) were found to decrease with increasing pH from 1.29 × 104 M−1 at pH 3.0 to 5.22 × 103 M−1 at pH 7.0. The thermodynamic parameters were calculated for inclusion complex formation in aqueous solution. Interestingly, it could be concluded that the degrees of curcumin stability improved by HPβCD grew with increasing drug–cyclodextrin binding ability. Furthermore, in vivo study not only revealed that the bioavailability of curcumin after oral administration to rats was significantly improved by curcumin/HPβCD inclusion complex, but also showed more dramatic changes in the plasma concentration–time curve (1752.76–866.70 ng mL−1 h) and the peak plasma concentration (370.10–178.11 ng mL−1) of drug by formation of complexes in pH 3–7 solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7
Scheme 2

Similar content being viewed by others

Abbreviations

CD:

Cyclodextrin

HPβCD:

2-Hydroxypropyl-β-cyclodextrin

HPLC:

High performance liquid chromatography

S 0 :

Solubility in a medium in the absence of CD

K S :

Apparent stability constant for the drug–CD interaction

[C 0]:

The initial concentration of drug

[C t ]:

The time-dependent concentration of drug

ΔH :

Values of enthalpy change

ΔS :

Values of entropy change

ΔG :

Variation of Gibbs free energy

k :

Observed first-order rate constant of drug

k 0 :

Observed first-order rate constant of drug in the absence of CD

k C :

Observed first-order rate constant for the inclusion complex

E a :

Activation energy (the amount of energy needed to initiate a chemical process, most often a reaction)

R.S.D.:

Relative standard deviation

C max :

Maximum plasma concentration

T max :

Time required to reach C max

AUC:

Total area under the plasma concentration–time

AUC(0–24) :

Total area under the plasma concentration–time curve from 0 to 24 h

AUC(0–∞) :

Total area under the plasma concentration–time curve from time zero to infinity

References

  1. Araujo, C.A.C., Leon, L.L.: Biological activities of Curcuma longa L. Mem. Inst. Oswaldo Cruz 96, 723–728 (2001)

    Article  CAS  Google Scholar 

  2. Srinivasan, K.: Spices as influencers of body metabolism: an overview of three decades of research. Food Res. Int. 38, 77–86 (2005)

    Article  CAS  Google Scholar 

  3. Tayyem, R.R., Heath, D.D., Al-Delaimy, W.K., Rock, C.L.: Curcumin content of turmeric and curry powders. Nutr. Cancer 55, 126–131 (2006)

    Article  CAS  Google Scholar 

  4. Aggarwal, B.B., Harikumar, K.B.: Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int. J. Biochem. Cell Biol. 41, 40–59 (2009)

    Article  CAS  Google Scholar 

  5. Sharma, R.A., Steward, W.P., Gescher, A.J.: Pharmacokinetics and pharmacodynamics of curcumin. Adv. Exp. Med. Biol. 595, 453–470 (2007)

    Article  Google Scholar 

  6. Ireson, C., Orr, S., Jones, D.J.L., Verschoyle, R., Lim, C.K., Luo, J.L., Howells, L., Plummer, S., Jukes, R., Williams, M., Steward, W.P., Gescher, A.: Characterization of metabolites of the chemopreventive agent curcumin in human and rat hepatocytes and in the rat in vivo, and evaluation of their ability to inhibit phorbol ester-induced prostaglandin E-2 production. Cancer Res. 61, 1058–1064 (2001)

    CAS  Google Scholar 

  7. Bar-Sela, G., Epelbaum, R., Schaffer, M.: Curcumin as an anti-cancer agent: review of the gap between basic and clinical applications. Curr. Med. Chem. 17, 190–197 (2010)

    Article  CAS  Google Scholar 

  8. Somasundaram, S., Edmund, N.A., Moore, D.T., Small, G.W., Shi, Y.Y., Orlowski, R.Z.: Dietary curcumin inhibits chemotherapy-induced apoptosis in models of human breast cancer. Cancer Res. 62, 3868–3875 (2002)

    CAS  Google Scholar 

  9. Chauhan, D.P.: Chemotherapeutic potential of curcumin for colorectal cancer. Curr. Pharm. Des. 8, 1695–1706 (2002)

    Article  CAS  Google Scholar 

  10. Cohly, H.H.P., Asad, S., Das, S.K., Angel, M.F., Rao, M.: Effect of antioxidant (turmeric, turmerin and curcumin) on human immunodeficiency virus. Int. J. Mol. Sci. 4, 22–33 (2003)

    Article  CAS  Google Scholar 

  11. Balasubramanyam, K., Varier, R.A., Altaf, M., Swaminathan, V., Siddappa, N.B., Ranga, U., Kundu, T.K.: Curcumin, a novel p300/CREB-binding protein-specific inhibitor of acetyltransferase, represses the acetylation of histone/nonhistone proteins and histone acetyltransferase-dependent chromatin transcription. J. Biol. Chem. 279, 51163–51171 (2004)

    Article  CAS  Google Scholar 

  12. Egan, M.E., Pearson, M., Weiner, S.A., Rajendran, V., Rubin, D., Glockner-Pagel, J., Canny, S., Du, K., Lukacs, G.L., Caplan, M.J.: Curcumin, a major constituent of turmeric, corrects cystic fibrosis defects. Science 304, 600–602 (2004)

    Article  CAS  Google Scholar 

  13. Zeitlin, P.: Can curcumin cure cystic fibrosis? New Engl. J. Med. 351, 606–608 (2004)

    Article  CAS  Google Scholar 

  14. Begum, A.N., Jones, M.R., Lim, G.P., Morihara, T., Kim, P., Heath, D.D., Rock, C.L., Pruitt, M.A., Yang, F.S., Hudspeth, B., Hu, S.X., Faull, K.F., Teter, B., Cole, G.M., Frautschy, S.A.: Curcumin structure-function, bioavailability, and efficacy in models of neuroinflammation and Alzheimer’s disease Frautschy. J. Pharmacol. Exp. Ther. 326, 196–208 (2008)

    Article  CAS  Google Scholar 

  15. Ortiz-Ortiz, M.A., Moran, J.M., Ruiz-Mesa, L.M., Niso-Santano, M., Bravo-SanPedro, J.M., Gomez-Sanchez, R., Gonzalez-Polo, R.A., Fuentes, J.M.: Curcumin exposure induces expression of the Parkinson’s disease-associated leucine-rich repeat kinase 2 (LRRK2) in rat mesencephalic cells. Neurosci. Lett. 468, 120–124 (2010)

    Article  CAS  Google Scholar 

  16. Anand, P., Kunnumakkara, A.B., Newman, R.A., Aggarwal, B.B.: Bioavailability of curcumin: problems and promises. Mol. Pharmacol. 4, 807–818 (2007)

    Article  CAS  Google Scholar 

  17. Brewster, M.E., Loftsson, T.: Cyclodextrins as pharmaccutical solubilizers. Adv. Drug Deliv. Rev. 59, 645–666 (2007)

    Article  CAS  Google Scholar 

  18. Choi, H.S., Takahashi, A., Ooya, T., Yui, N.: Structural role of guest molecules in rapid and sensitive supramolecular assembling system based on β-cyclodextrin-conjugated poly(epsilon-lysine). Macromolecules 37, 10036–10041 (2004)

    Article  CAS  Google Scholar 

  19. Davis, M.E., Brewster, M.E.: Cyclodextrin-based pharmaceutics: past, present and future. Nat. Rev. Drug Discov. 3, 1023–1035 (2004)

    Article  CAS  Google Scholar 

  20. Yang, B., Yang, L.J., Lin, J., Chen, Y., Liu, Y.: Binding behaviors of scutellarin with α-, β-, γ-cyclodextrins and their derivatives. J. Incl. Phenom. Macrocycl. Chem. 64, 149–155 (2009)

    Article  CAS  Google Scholar 

  21. Liu, Y., Chen, G.S., Chen, Y., Zhang, N., Chen, J., Zhao, Y.L.: Bundle-shaped cyclodextrin-Tb nano-supramolecular assembly mediated by C-60. Nano Lett. 6, 2196–2200 (2006)

    Article  CAS  Google Scholar 

  22. Loftsson, T., Duchene, D.: Cyclodextrins and their pharmaceutical applications. Int. J. Pharm. 329, 1–11 (2007)

    Article  CAS  Google Scholar 

  23. Loftsson, T., Hreinsdottir, D., Másson, M.: Evaluation of cyclodextrin solubilization of drugs. Int. J. Pharm. 302, 18–28 (2005)

    Article  CAS  Google Scholar 

  24. Agueros, M., Ruiz-Gaton, L., Vauthier, C., Bouchemal, K., Espuelas, S., Ponchel, G., Irache, J.M.: Combined hydroxypropyl-β-cyclodextrin and poly(anhydride) nanoparticles improve the oral permeability of paclitaxel. Eur. J. Pharm. Sci. 38, 405–413 (2009)

    Article  CAS  Google Scholar 

  25. Muraoka, A., Tokumura, T., Machida, Y.: Evaluation of the bioavailability of flurbiprofen and its β-cyclodextrin inclusion complex in four different doses upon oral administration to rats. Eur. J. Pharm. Biopharm. 58, 667–671 (2004)

    Article  CAS  Google Scholar 

  26. Buchanan, C.M., Buchanan, N.L., Edgar, K.J., Little, J.L., Ramsey, M.G., Ruble, K.M., Wacher, V.J., Wernpe, M.F.: Pharmacokinetics of saquinavir after intravenous and oral dosing of saquinavir: hydroxybutenyl-β-cyclodextrin formulations. Biomacromolecules 9, 305–313 (2008)

    Article  CAS  Google Scholar 

  27. Cappello, B., Carmignani, C., Iervolino, M., La Rotonda, M.I., Saettone, M.F.: Solubilization of tropicamide by hydroxypropyl-β-cyclodextrin and water-soluble polymers: in vitro/in vivo studies. Int. J. Pharm. 213, 75–81 (2001)

    Article  CAS  Google Scholar 

  28. Loftsson, T., Brewster, M.E.: Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J. Pharm. Sci. 85, 1017–1025 (1996)

    Article  CAS  Google Scholar 

  29. Hegge, A.B., Schuller, R.B., Kristensen, S., Tønnesen, H.H.: In vitro release of curcumin from vehicles containing alginate and cyclodextrin. Studies of curcumin and curcuminoides. XXXIII. Pharmazie 63, 585–592 (2008)

    CAS  Google Scholar 

  30. Marcolino, V.A., Zanin, G.M., Durrant, L.R., Benassi, M.D.T., Matioli, G.: Interaction of curcumin and bixin with β-cyclodextrin: complexation methods, stability, and applications in food. J. Agric. Food Chem. 59(7), 3348–3357 (2011)

    Article  CAS  Google Scholar 

  31. Tang, B., Ma, L., Wang, H.Y., Zhang, G.Y.: Study on the supramolecular interaction of curcumin and β-cyclodextrin by spectrophotometry and its analytical application. J. Agric. Food Chem. 50, 1355–1361 (2002)

    Article  CAS  Google Scholar 

  32. Qi, A.D., Li, L., Liu, Y.: The binding ability and inclusion complexation behavior of curcumin with natural α-, β-, γ-cyclodextrins and organoselenium-bridged bis (β-cyclodextrin)s. J. Chin. Pharm. Sci. 12(1), 15–20 (2003)

    CAS  Google Scholar 

  33. Singh, R., Tønnesen, H.H., Vogensen, S.B., Loftsson, T., Másson, M.: Studies of curcumin and curcuminoids. XXXVI. The stoichiometry and complexation constants of cyclodextrin complexes as determined by the phase-solubility method and UV–Vis titration. J. Incl. Phenom. Macrocycl. Chem. 66, 335–348 (2010)

    Article  CAS  Google Scholar 

  34. Swaroop, S., Mishra, B., Priyadarsini, K.I.: Studies on β-cyclodextrin inclusion complex of curcumin. Proc. Natl. Acad. Sci. India B Biol. Sci. 77(3), 205–211 (2007)

    Google Scholar 

  35. Baglole, K.N., Boland, P.G., Wagner, B.D.: Fluorescence enhancement of curcumin upon inclusion into parent and modified cyclodextrins. J. Photochem. Photobiol. A. 173, 230–237 (2005)

    Article  CAS  Google Scholar 

  36. Tønnesen, H.H., Másson, M., Loftsson, T.: Studies of curcumin and curcuminoids. XXVII. Cyclodextrin complexation: solubility, chemical and photochemical stability. Int. J. Pharm. 244, 127–135 (2002)

    Article  Google Scholar 

  37. Tomren, M.A., Másson, M., Loftsson, T., Tønnesen, H.H.: Studies on curcumin and curcuminoids XXXI. Symmetric and asymmetric curcuminoids: stability, activity and complexation with cyclodextrin. Int. J. Pharm. 338, 27–34 (2007)

    Article  CAS  Google Scholar 

  38. Yadav, V.R., Suresh, S., Devi, K., Yadav, S.: Effect of cyclodextrin complexation of curcumin on its solubility and antiangiogenic and anti-inflammatory activity in rat colitis model. AAPS PharmSciTech 10(3), 752–762 (2009)

    Article  CAS  Google Scholar 

  39. Yallapu, M.M., Jaggi, M., Chauhan, S.C.: β-Cyclodextrin-curcumin self-assembly enhances curcumin delivery in prostate cancer cells. Colloids Surf. B Biointerfaces 79(1), 113–125 (2010)

    Article  CAS  Google Scholar 

  40. Gould, S., Scott, R.C.: 2-Hydroxypropyl-β-cyclodextrin (HP-β-CD): a toxicology review. Food Chem. Toxicol. 43, 1451–1459 (2005)

    Article  CAS  Google Scholar 

  41. Stella, V.J., Rao, V.M., Zannou, E.A., Zia, V.: Mechanisms of drug release from cyclodextrin complexes. Adv. Drug Deliv. Rev. 36, 3–16 (1999)

    Article  CAS  Google Scholar 

  42. Sanghvi, R., Mogalian, E., Machatha, S.G., Narazaki, R., Karlage, K.L., Jain, P., Tabibi, S.E., Glaze, E., Myrdal, P.B., Yalkowsky, S.H.: Preformulation and pharmacokinetic studies on antalarmin: a novel stress inhibitor. J. Pharm. Sci. 98, 205–214 (2009)

    Article  CAS  Google Scholar 

  43. Tommasini, S., Calabro, M.L., Raneri, D., Ficarra, P., Ficarra, R.: Combined effect of pH and polysorbates with cyclodextrins on solubilization of naringenin. J. Pharm. Biomed. Anal. 36, 327–333 (2004)

    Article  CAS  Google Scholar 

  44. Pathak, S.M., Musmade, P., Dengle, S., Karthik, A., Bhat, K., Udupa, N.: Enhanced oral absorption of saquinavir with methyl-β-cyclodextrin-preparation and in vitro and in vivo evaluation. Eur. J. Pharm. Sci. 41, 440–451 (2010)

    Article  CAS  Google Scholar 

  45. Holvoet, C., Plaizier-Vercammen, J., Vander Heyden, Y., Gabriels, M., Camu, F.: Preparation and in vitro release rate of fentanyl-cyclodextrin complexes for prolonged action in epidural analgesia. Int. J. Pharm. 265, 13–26 (2003)

    Article  CAS  Google Scholar 

  46. Wu, Z.M., Tucker, I.G., Razzak, M., McSporran, K., Medlicott, N.J.: Tissue compatibility and pharmacokinetics of three potential subcutaneous injectables for low-pH drug solutions. J. Pharm. Pharmacol. 62, 873–882 (2010)

    Article  CAS  Google Scholar 

  47. Han, H.K., Choi, H.K.: Improved absorption of meloxicam via salt formation with ethanolamines. Eur. J. Pharm. Biopharm. 65, 99–103 (2007)

    Article  CAS  Google Scholar 

  48. Jerry, N., Anitha, Y., Sharma, C.P., Sony, P.: In vivo absorption studies of insulin from an oral delivery system. Drug Deliv. 8, 19–23 (2001)

    Article  CAS  Google Scholar 

  49. Higuchi, T., Connors, K.A.: Phase-solubility techniques. Adv. Anal. Chem. Instrum. 4, 117–212 (1965)

    CAS  Google Scholar 

  50. Loftsson, T., Másson, M., Brewster, M.E.: Self-association of cyclodextrins and cyclodextrin complexes. J. Pharm. Sci. 93, 1091–1099 (2004)

    Article  CAS  Google Scholar 

  51. Tommasini, S., Raneri, D., Ficarra, R., Calabro, M.L., Stancanelli, R., Ficarra, P.: Improvement in solubility and dissolution rate of flavonoids by complexation with β-cyclodextrin. J. Pharm. Biomed. Anal. 35, 379–387 (2004)

    Article  CAS  Google Scholar 

  52. Wang, Y.J., Pan, M.H., Cheng, A.L., Lin, L.I., Ho, Y.S., Hsieh, C.Y., Lin, J.K.: Stability of curcumin in buffer solutions and characterization of its degradation products. J. Pharm. Biomed. Anal. 15, 1867–1876 (1997)

    Article  CAS  Google Scholar 

  53. Feng, S.G., Qin, G.Y., Liu, H.X., Jiang, Z.H., Liang, J.M., Qiu, F.: Isolation and identification of degradation products of curcumin and study of stability of curcumin. J. Shenyang Pharm. Univ. 26(5), 361–365 (2009)

    CAS  Google Scholar 

  54. Tønnesen, H.H., Karlsen, J.: Studies on curcumin and curcuminoids. V. Alkaline degradation of curcumin. Z. Lebensm. Unters. Forsch. 180, 132–134 (1985)

    Article  Google Scholar 

  55. Holder, G.M., Plummer, J.L., Ryan, A.J.: The metabolism and excretion of curcumin (1,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) in the rat. Xenobiotica 8(12), 761–768 (1978)

    Article  CAS  Google Scholar 

  56. Ravindranath, V., Chandrasekhara, N.: Absorption and tissue distribution of curcumin in rats. Toxicology 16(3), 259–265 (1980)

    Article  CAS  Google Scholar 

  57. Arun, R., Ashok Kumar, C.K., Sravanthi, V.V.N.S.S.: Cyclodextrins as drug carrier molecule: a review. Sci. Pharm. 76, 567–598 (2008)

    Article  Google Scholar 

Download references

Acknowledgment

This study was supported by Tianjin Science and Technology Development Fund for Colleges and Universities (20090223).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ai-Di Qi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ouyang, HZ., Fang, L., Zhu, L. et al. Effect of external factors on the curcumin/2-hydroxypropyl-β-cyclodextrin: in vitro and in vivo study. J Incl Phenom Macrocycl Chem 73, 423–433 (2012). https://doi.org/10.1007/s10847-011-0080-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-011-0080-x

Keywords

Navigation