Skip to main content

Advertisement

Log in

Docking and 3D-QSAR study of stability constants of benzene derivatives as environmental pollutants with α-cyclodextrin

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Comparative molecular field analysis region focusing (CoMFA-RF) and VolSurf methods were employed to develop 3D-QSAR models for prediction of stability constants of mono- and 1,4-disubstituted benzenes with α-Cyclodextrin. The combination of CoMFA fields with some physicochemical descriptors ultimate to a more predictive model. We applied two effective feature selection techniques, genetic algorithm (GA) and successive projection algorithm (SPA), to extract more informative VolSurf descriptors. Partial least square and support vector machine (SVM) were used to model construction and SPA–SVM based VolSurf descriptors showed excellent performance in predicting stability constants. The predictive ability of modified CoMFA-RF and VolSurf models were determined using a test set of 18 compounds result in correlation coefficients of 0.604 and 0.889 respectively. For further model validation, the cross validation (leave one out), progressive scrambling and bootstrapping were also applied. Results of both methods showed that electrostatic and hydrophobic effects and shape parameters are main influencing factors in inclusion complexation of benzenes derivatives with α-Cyclodextrin. The results of docking study, which can predict the binding mode and orientation of guest molecules in Cyclodextrin cavity, are in agreement with of combined 3D-QSAR models results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Valle, D.E.: Cyclodextrins and their uses: a review. Process Biochem 39, 1033–1046 (2004)

    Article  Google Scholar 

  2. Szejtli, J.: Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98, 1743–1754 (1998)

    Article  CAS  Google Scholar 

  3. Loethen, S., Kim, J., Thompson, D.H.: Biomedical applications of cyclodextrin based polyrotaxanes. Polym. Rev. 47, 383–418 (2007)

    Article  CAS  Google Scholar 

  4. Loftsson, T., Duchene, D.: Cyclodextrins and their pharmaceutical applications. Int. J. Pharm. 329, 1–11 (2007)

    Article  CAS  Google Scholar 

  5. Ogoshi, T., Harada, A.: Chemical sensors based on cyclodextrin derivatives. Sensors 8, 4961–4982 (2008)

    Article  CAS  Google Scholar 

  6. Shpigun, O.A., Ananieva, I.A., Budanova, N.Y., Shapovalova, E.N.: Use of cyclodextrins for separation of enantiomers. Russ. Chem. Rev. 72, 1035–1048 (2003)

    Article  CAS  Google Scholar 

  7. Vyas, A., Saraf, S.: Cyclodextrin based novel drug delivery systems. J. Inc. Phenom. Macro. Chem. 62, 23–42 (2008)

    Article  CAS  Google Scholar 

  8. Connors, K.A.: The stability of cyclodextrin complexes in solution. Chem. Rev. 97, 1325–1358 (1997)

    Article  CAS  Google Scholar 

  9. Astray, G., Gonzalez-Barreiro, C., Mejuto, J.C., Rial-Otero, R., Simal-Gándara, J.: A review on the use of cyclodextrins in foods. Food Hydrocolloid 23, 1631–1640 (2009)

    Article  CAS  Google Scholar 

  10. Tirapegui, C., Jara, F., Guerrero, J., Rezende, M.C.: Host–guest interactions in cyclodextrin inclusion complexes with solvatochromic dyes. J. Phys. Org. Chem. 19, 786–792 (2005)

    Article  Google Scholar 

  11. Dudek, A.Z., Arodz, T., Gálvez, T.: Computational methods in developing quantitative structure-activity relationships (QSAR): a review. Comb. Chem. High Throughput Screen 9, 213–228 (2006)

    Article  CAS  Google Scholar 

  12. Viglianti, C., Hanna, K., de Brauer, C., Germain, P.: Removal of polycyclic aromatic hydrocarbons from aged-contaminated soil using cyclodextrins: experimental study. Environ. Pollut. 140, 427–435 (2006)

    Article  CAS  Google Scholar 

  13. Ko, S.O., Schlautman, M.A., Carraway, E.R.: Partitioning of hydrophobic organic compounds to hydroxypropyl-β- cyclodextrin: experimental studies and model predictions for surfactant-enhanced remediation applications. Environ. Sci. Technol. 33, 2765–2770 (1999)

    Article  CAS  Google Scholar 

  14. Sheremata, T.W., Hawari, J.: Cyclodextrins for desorption and solubilization of 2,4,6-trinitrotoluene and its metabolites from soil. Environ. Sci. Technol. 34, 3462–3468 (2000)

    Article  CAS  Google Scholar 

  15. Crini, G.: Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog. Polym. Sci. 30, 38–70 (2005)

    Article  CAS  Google Scholar 

  16. Viglianti, C., Hanna, K., De Brauer, C., Germain, P.: Use of cyclodextrins as an environmentally friendly extracting agent in organic aged-contaminated soil remediation. J. Incl. Phenom. Macro. Chem. 56, 275–280 (2006)

    Article  CAS  Google Scholar 

  17. Wen-lu, S., Qing-guo, H., Lian-sheng, W.: β-cyclodextrin (β-CD) influence on the biotoxicities of substituted benzene compounds and pesticide intermediates. Chemosphere 38, 693–698 (1999)

    Article  CAS  Google Scholar 

  18. Sakurai, M., Kitagawa, M., Hoshi, H., Inoue, Y., Chujo, R.: A molecular orbital study of cyclodextrin (cyclomalto-oligosaccharide) inclusion complexes. III, dipole moments of cyclodextrins in various types of inclusion complexes. Carbohydr. Res. 198, 181–191 (1990)

    Article  CAS  Google Scholar 

  19. Liu, L., Li, W.G., Guo, Q.X.: Regression analysis for the host–guest interaction of α-cyclodextrin with mono- and 1,4-disubstituted benzenes. J. Incl. Phenom. Macro. Chem. 34, 413–419 (1999)

    Article  CAS  Google Scholar 

  20. Liu, L., Guo, Q.X.: Novel prediction for the driving force and guest orientation in the complexation of β-and α-cyclodextrin with benzene derivatives. J. Phys. Chem. B 103, 3461–3467 (1999)

    Article  CAS  Google Scholar 

  21. Guo, Q.X., Luo, S.H., Liu, Y.C.: Substituent effects on the driving force for inclusion complexation of β-and α-cyclodextrin with monosubstituted benzene derivatives. J. Incl. Phenom. Macro. Recog. Chem 30, 173–182 (1998)

    Article  CAS  Google Scholar 

  22. Guo, Q.X., Liu, L., Cai, W.S., Jiang, Y., Liu, Y.: Driving force prediction for inclusion complexation of α-cyclodextrin with benzene derivatives by a wavelet neural network. Chem. Phys. Lett. 290, 514–518 (1998)

    Article  CAS  Google Scholar 

  23. Liu, L., Li, W.G., Guo, Q.X.: Association constant prediction for the inclusion of α-cyclodextrin with benzene derivatives by an artificial neural network. J. Incl. Phenom. Macro. Chem. 34, 291–298 (1999)

    Article  Google Scholar 

  24. Liu, L., Guo, Q.X.: Wavelet neural network and its application to the inclusion of α-cyclodextrin with benzene derivatives. J. Chem. Inf. Comput. Sci. 39, 133–138 (1999)

    Article  CAS  Google Scholar 

  25. Golovanov, I.B., Zhenodarova, S.M., Tsygankova, I.G.: Quantitative structure-property relationship: xxvii. estimation of the free energy of formation of host: guest complexes of α-cyclodextrin with benzene derivatives. Russ. J. Gen. Chem. 76, 267–271 (2006)

    Article  CAS  Google Scholar 

  26. Estrada, E., Perdomo-Lopez, I., Torres-Labandeira, J.J.: Combination of 2D-, 3D-connectivity and quantum chemical descriptors in QSPR. Complexation of β- and α-cyclodextrin with benzene derivatives. J. Chem. Inf. Comput. Sci. 41, 1561–1568 (2001)

    Article  CAS  Google Scholar 

  27. Suzuki, T., Ishida, M., Fabian, W.: Classical QSAR and comparative molecular field analyses of the host-guest interaction of organic molecules with cyclodextrins. J. Comput. Aided Mol. Design 14, 669–678 (2000)

    Article  CAS  Google Scholar 

  28. Marengo, E., Todeschini, R.: A new algorithm for optimal, distance based experimental design. Chemometr. Intell. Lab. Syst. 1, 37–44 (1992)

    Article  Google Scholar 

  29. Clark, R.D., Fox, P.C.: Statistical variation in progressive scrambling. J. Comput. Aided Mol. Design 18, 563–576 (2004)

    Article  CAS  Google Scholar 

  30. van der Voet, H.: Comparing the predictive accuracy of models using a simple randomization test. Chemometr. Intell. Lab. Syst. 25, 313–323 (1994)

    Article  Google Scholar 

  31. Cramer, R.D., Patterson, D.E., Bunce, J.D.: Comparative molecular-field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc. 110, 5959–5967 (1988)

    Article  CAS  Google Scholar 

  32. Cruciani, C., Crivori, P., Carrupt, P.A., Testa, B.: Molecular fields in quantitative structure-permeation relationships: the VolSurf approach. Theochem 503, 17–30 (2000)

    Article  CAS  Google Scholar 

  33. Crivori, P., Cruciani, G., Carrupt, P.A., Testa, B.: Predicting blood-brain barrier permeation from three-dimensional molecular structure. J. Med. Chem. 43, 2204–2216 (2000)

    Article  CAS  Google Scholar 

  34. Araújo, M.C.U., Saldanha, T.C.B., Galvão, R.K.H., Yoneyama, T., Chame, H.C., Visani, V.: The successive projections algorithm for variable selection in spectroscopic multicomponent analysis. Chemometr. Intell. Lab. Syst. 57, 65–73 (2001)

    Article  Google Scholar 

  35. Yasri, A., Hartsough, D.: Toward an optimal procedure for variable selection and QSAR model building. J. Chem. Inf. Comput. Sci. 41, 1218–1227 (2001)

    Article  CAS  Google Scholar 

  36. Norinder, U.: Support vector machine models in drug design: applications to drug transport processes and QSAR using simplex optimisations and variable selection. Neurocomputing 55, 337–346 (2003)

    Article  Google Scholar 

  37. Wold, S., Sjöström, M., Eriksson, L.: PLS-regression: a basic tool of chemometrics. Chemometr. Intell. Lab. Syst. 58, 109–130 (2001)

    Article  CAS  Google Scholar 

  38. Wang, R.X., Gao, Y., Liu, L., Lai, L.H.: All-orientation search and all-placement search in comparative molecular field analysis. J. Mol. Model. 4, 276–282 (1998)

    Article  CAS  Google Scholar 

  39. Baroni, M., Costantino, G., Cruciani, G., Riganelli, D., Valigi, R., Clementi, S.: Generating optimal linear PLS estimations (GOLPE): An advanced chemometric tool for handling 3D-QSAR problems. Quant. Struct. Act. Relat. 12, 9–20 (1993)

    Article  CAS  Google Scholar 

  40. Tropsha, A., Cho, S.J.: Cross-validated R 2 guided region selection for comparative molecular field analysis: a simple method to achieve consistent results. J. Med. Chem. 38, 1060–1066 (1995)

    Article  Google Scholar 

  41. Kamitori, S., Toyama, Y., Matsuzaka, O.: Crystal structures of cyclomaltohexaose (α-cyclodextrin) complexes with p-bromophenol and m-bromophenol. Carbohydr. Res. 332, 235–240 (2001)

    Article  CAS  Google Scholar 

  42. Momany, F.A., Rone, R.J.: Validation of the general purpose QUANTA 3.2/CHARMm force field. J. Comput. Chem. 13, 888–900 (1992)

    Article  CAS  Google Scholar 

  43. Guosheng, W.U., Robertson, D.H., Brooks, C.L., Vieth, M.: Detailed Analysis of grid-based molecular docking: a case study of CDOCKER-A CHARMm-based MD docking algorithm. J. Comput. Chem. 24, 1549–1562 (2003)

    Article  Google Scholar 

  44. Canceill, J., Lacombe, L., Collet, A.: Water-soluble cryptophane binding lipophilic guests in aqueous solution. J. Chem. Soc. Chem. Commun. 3, 219–221 (1987)

    Article  Google Scholar 

  45. Hirayama, F., Uekama, K.: In: Duchene, D. (ed.) Cyclodextrin and their industrial uses, pp. 131–172. Editions De Sant′e, Paris (1987)

    Google Scholar 

  46. Halperin, I., Ma, B., Wolfson, H., Nussinov, R.: Principles of docking: an overview of search algorithms and a guide to scoring functions. Proteins 47, 409–443 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully appreciate to professor S. Kamitori (Rare Sugar Research Center and Faculty of Agriculture, Kagawa University, Japan) for granting permission to access the Crystallographic Information File (CIF) format of crystallographic structure of α-CD-p-bromophenol complex.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jahan B. Ghasemi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghasemi, J.B., Salahinejad, M., Rofouei, M.K. et al. Docking and 3D-QSAR study of stability constants of benzene derivatives as environmental pollutants with α-cyclodextrin. J Incl Phenom Macrocycl Chem 73, 405–413 (2012). https://doi.org/10.1007/s10847-011-0078-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-011-0078-4

Keywords

Navigation