Skip to main content
Log in

The effect of phosphate buffer solutions on uniconazole complexation with hydroxypropyl-β-cyclodextrin and methyl-β-cyclodextrin

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

The inclusion complexes of uniconazole [(E)-1-(4-chlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-lyl)-1-penten-3-ol, UCZ] with two cyclodextrin derivatives, hydroxypropyl-β-cyclodextrin (HP-β-CD) and methylated-β-cyclodextrin (Me-β-CD), were prepared and characterized by 1H NMR and FT-IR. The phase solubility of UCZ and HP-β-CD, UCZ and Me-β-CD, which displays the ability of CDs complexation and solubilization, was studied in aqueous solutions and phosphate buffer solutions (PBS) with different property pH values (6.2, 7.2, 8.0). The solubility results indicated that the pH of PBS showed more enhancement on the interaction of HP-β-CD and UCZ than Me-β-CD with the increasing pH value, and the optimal pH value for complexation of UCZ and HP-β-CD, UCZ and Me-β-CD was at 8.0 and at 7.2, respectively. These were also determined by UCZ release behavior and dissolution studies of the complexes in solid state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhang, M., Duan, L., Tian, X., He, Z., Li, J., Wang, B., Li, Z.: Uniconazole-induced tolerance of soybean to water deficit stress in relation to changes in photosynthesis, hormones and antioxidant system. J. Plant Physiol. 164, 709–717 (2007)

    Article  CAS  Google Scholar 

  2. Duan, L., Guan, C., Li, J., Eneji, A.E., Li, Z., Zhai, Z.: Compensative effects of chemical regulation with uniconazole on physiological damages caused by water deficiency during the grain filling stage of wheat. J. Agron. Crop Sci. 194, 9–14 (2008)

    Article  CAS  Google Scholar 

  3. Cha-um, S., Puthea, O., Kirdmanee, C.: An effective in vitro acclimatization using uniconazole treatments and ex-vitro adaptation of phalaenopsis orchid. Sci. Hortic. 121, 468–473 (2009)

    Article  CAS  Google Scholar 

  4. Ambrogi, V., Famiani, F., Perioli, L., Marmottinic, F., Di Cunzoloa, I., Rossia, C.: Effect of MCM-41 on the dissolution rate of the poorly soluble plant growth regulator, the indole-3-butyric acid. Microporous Mesoporous Mater. 96, 177–183 (2006)

    Article  CAS  Google Scholar 

  5. Rika, K., Terumi, S., Toshiyuki, K.: Metabolism of uniconazole-P in water-sediment systems under illumination. Environ. Toxicol. Chem. 25, 310–316 (2006)

    Article  Google Scholar 

  6. Szejtli, J.: Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98, 1743–1754 (1998)

    Article  CAS  Google Scholar 

  7. Tsai, Y., Tsai, H.H., Wu, C.P., Tsai, F.J.: Preparation, characterisation and activity of the inclusion complex of paeonol with β-cyclodextrin. Food Chem. 120, 837–841 (2010)

    Article  CAS  Google Scholar 

  8. Wu, H.H., Liang, H., Yuan, Q.P., Wang, T.X., Yan, X.: Preparation and stability investigation of the inclusion complex of sulforaphane with hydroxypropyl-β-cyclodextrin. Carbohydr. Polym. 82, 613–617 (2010)

    Article  CAS  Google Scholar 

  9. Szerman, N., Schroh, I., Rossi, A.L., Rosso, A.M., Krymkiewicz, N., Ferrarotti, S.A.: Cyclodextrin production by cyclodextrin glycosyltransferase from Bacillus circulans DF 9R. Bioresour. Technol. 98, 2886–2891 (2007)

    Article  CAS  Google Scholar 

  10. Uekama, K., Hirayama, F., Irie, T.: Cyclodextrin drug carrier systems. Chem. Rev. 98, 2045–2076 (1998)

    Article  CAS  Google Scholar 

  11. Mielcarek, J., Czernielewska, A., Czarczyńska, B.: Inclusion complexes of felodipine and amlodipine with methyl-β-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 54, 17–21 (2006)

    Article  CAS  Google Scholar 

  12. Servais, A.C., Fillet, M., Chiap, P., Dewé, W., Hubert, P., Crommen, J.: Influence of the nature of the electrolyte on the chiral separation of basic compounds in nonaqueous capillary electrophoresis using heptakis (2,3-di-O-methyl-6-O-sulfo)-β-cyclodextrin. J. Chromatogr. A 1068, 143–150 (2005)

    Article  CAS  Google Scholar 

  13. Hanna, K., Brauer, C., Germain, P.: Solubilization of the neutral and charged forms of 2,4,6-trichlorophenol by β-cyclodextrin, methyl-β-cyclodextrin and hydroxypropyl-β-cyclodextrin in water. J. Hazard. Mater. 100, 109–116 (2003)

    Article  CAS  Google Scholar 

  14. Özkana, Y., Ataya, T., Dïkmena, N., Işimera, A., Aboul-Enein, H.Y.: Improvement of water solubility and in vitro dissolution rate of gliclazide by complexation with β-cyclodextrin. Pharm. Acta Helv. 74, 365–370 (2000)

    Article  Google Scholar 

  15. Higuchi, T., Connors, K.A.: Phase-solubility techniques. Adv. Anal. Chem. Instrum. 4, 117–212 (1965)

    CAS  Google Scholar 

  16. Piletska, E.V., Turner, N.W., Turner, A.P.F., Piletsky, S.A.: Controlled release of the herbicide simazine from computationally designed molecularly imprinted polymers. J. Control. Release 108, 132–139 (2005)

    Article  CAS  Google Scholar 

  17. Gladys, G., Claudia, G., Marcela, L.: The effect of pH and triethanolamine on sulfisoxazole complexation with hydroxypropyl-β-cyclodextrin. Eur. J. Pharm. Sci. 20, 285–293 (2003)

    Article  Google Scholar 

  18. Zhu, X.F., Duan, L.S., Tan, W.M., Li, Z.H., Tian, X.L., Wang, B.M.: The inclusion complex of uniconazole-β-cyclodextrin: preparation, characteristic and bioactivity. Chin. J. Pest. Sci. 12, 61–66 (2010)

    CAS  Google Scholar 

  19. Schneider, H.J., Hacket, F., Rudiger, V.: NMR studies of cyclodextrins and cyclodextrin complexes. Chem. Rev. 98, 1755–1785 (1998)

    Article  CAS  Google Scholar 

  20. Hedges, A.R.: Industrial applications of cyclodextrins. Chem. Rev. 98, 2035–2044 (1998)

    Article  CAS  Google Scholar 

  21. Ma, H.L., Wu, J.J., Liang, W.J., Chao, J.B.: Study on the association phenomenon of cyclodextrin to porphyrin J-aggregates by NMR spectroscopy. J. Incl. Phenom. Macrocycl. Chem. 58, 221–226 (2007)

    Article  CAS  Google Scholar 

  22. Grillo, R., Melo, N.F.S., Fraceto, L.F.: Study of the interaction between hydroxymethylnitrofurazone and 2-hydroxypropyl-β-cyclodextrin. J. Pharm. Biomed. Anal. 47, 295–302 (2008)

    Article  CAS  Google Scholar 

  23. Heise, H.M., Kuckuk, R., Bereck, A., Riegel, D.: Infrared spectroscopy and Raman spectroscopy of cyclodextrin derivatives and their ferrocene inclusion complexes. Vib. Spectrosc. 53, 19–23 (2010)

    Article  CAS  Google Scholar 

  24. Liu, L.X., Zhu, S.Y.: Preparation and characterization of inclusion complexes of prazosin hydrochloride with β-cyclodextrin and hydroxypropyl-β-cyclodextrin. J. Pharm. Biomed. Anal. 40, 122–127 (2006)

    Article  CAS  Google Scholar 

  25. Jun, S.W., Kim, M.S., Kim, J.S., Park, H.J., Lee, S., Woo, J.S., Hwang, S.J.: Preparation and characterization of simvastatin/hydroxypropyl-β-cyclodextrin inclusion complex using supercritical antisolvent (SAS) process. Eur. J. Pharm. Biopharm. 66, 413–421 (2007)

    Article  CAS  Google Scholar 

  26. Ribeiro, L., Ferreira, D.C., Veiga, F.J.B.: In vitro controlled release of vinpocetine–cyclodextrin–tartaric acid multicomponent complexes from HPMC swellable tablets. J. Control. Release 103, 325–339 (2005)

    Article  CAS  Google Scholar 

  27. Figueiras, A., Carvalho, R.A., Ribeiro, L., Labandeira, J.J.T., Veiga, F.J.B.: Solid-state characterization and dissolution profiles of the inclusion complexes of omeprazole with native and chemically modified β-cyclodextrin. Eur. J. Pharm. Biopharm. 67, 531–539 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of the National High Technology Research and Development Program of China (No. 2011AA10A206) and Transformation Fund for Agricultural Science and Technology Achievements of China (No. 2008GB23600451).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liusheng Duan.

Additional information

The first two authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, X., Tan, W., Zhou, F. et al. The effect of phosphate buffer solutions on uniconazole complexation with hydroxypropyl-β-cyclodextrin and methyl-β-cyclodextrin. J Incl Phenom Macrocycl Chem 73, 193–198 (2012). https://doi.org/10.1007/s10847-011-0042-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-011-0042-3

Keywords

Navigation