Skip to main content
Log in

Synthesis and properties of photo-activable phthalocyanines: a brief overview

  • Review Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Phthalocyanines (Pcs) can very well satisfy the different demands of photosensitizer in photodynamic therapy (PDT) such as absorption, amphiphilicity and most importantly, high photochemical reactivity, depending on the subtle interplay of structure–function relationships. They have been shown to be phototoxic against a number of tumor cells. Certain criteria of ideal photosensitizers for PDT were described. A brief summary of the synthesis and some properties of photo-activable Pcs have been presented and an outlook for future photocytotoxic Pcs given. These Pcs are classified into three groups: (1) Pcs with different peripheral and/or non-peripheral substitution; (2) Pcs with different axial substitution; (3) Pcs with different metal center.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Scheme 3
Fig. 4
Fig. 5
Fig. 6
Scheme 4
Fig. 7
Scheme 5
Fig. 8
Fig. 9
Scheme 6
Fig. 10
Scheme 7
Fig. 11
Scheme 8
Fig. 12
Scheme 9
Fig. 13
Scheme 10
Scheme 11
Scheme 12
Fig. 14
Scheme 13
Fig. 15
Scheme 14
Fig. 16
Fig. 17
Scheme 15
Fig. 18
Fig. 19
Fig. 20
Scheme 16
Scheme 17
Fig. 21
Fig. 22

Similar content being viewed by others

Notes

  1. Heavy atom effect enhances the rate of a spin-forbidden process by the presence of an atom of high atomic number, which is either pert of, or external to, the excited molecular entity. Mechanistically, it responds to a spin–orbit coupling enhancement produced by a heavy atom [14].

References

  1. Leznoff, C.C., Lever, A.B.P. (eds.): Phthalocyanines Properties and Applications. VCH, Weinheim (1989–1996)

  2. Tang, C.W.: Two-layer organic photovoltaic cell. Appl. Phys. Lett. 48, 183–185 (1986)

    Article  CAS  Google Scholar 

  3. Chintakula, G., Rajaputra, S., Singh, V.P.: Schottky diodes on nanowires of copper phthalocyanine. Sol. Energy Mater. Sol. Cells 94, 34–39 (2010)

    Article  CAS  Google Scholar 

  4. Dumoulin, F., Durmuş, M., Ahsen, V., Nyokong, T.: Synthetic pathways to water-soluble phthalocyanines and close analogs. Coord. Chem. Rev. 254, 2792–2847 (2010)

    Article  CAS  Google Scholar 

  5. Zhang, X.-F., Wang, Y., Niu, L.: Titanyl phthalocyanine and its soluble derivatives: highly efficient photosensitizers for singlet oxygen production. J. Photochem. Photobiol. A 209, 232–237 (2010)

    Article  CAS  Google Scholar 

  6. Xu, Z., Zhang, G., Cao, Z., Zhao, J., Li, H.: Effect of N atoms in the backbone of metal phthalocyanine derivatives on their catalytic activity to lithium battery. J. Mol. Catal. A 318, 101–105 (2010)

    Article  CAS  Google Scholar 

  7. Sakamoto, K., Ohno-Okumura, E.: Syntheses and functional properties of phthalocyanines. Materials 2, 1127–1179 (2009)

    Article  CAS  Google Scholar 

  8. Hirohashi, R., Sakamoto, K., Okumura, E. (eds.): Phthalocyanines as Functional Dyes. Industrial Publishing & Consulting, Inc., Tokyo (2004)

    Google Scholar 

  9. de la Torre, G., Vazquez, P., Torres, T.: Role of structural factors in the nonlinear optical properties of phthalocyanines and related compounds. Chem. Rev. 104, 3723–3750 (2004)

    Article  Google Scholar 

  10. Mortimer, R.J., Dyer, A.L., Reynolds, J.R.: Electrochromic organic and polymeric materials for display applications. Displays 27, 2–18 (2006)

    Article  CAS  Google Scholar 

  11. Allen, C.M., Sharman, W.M., Van Lier, J.E.: Current status of phthalocyanines in the photodynamic therapy of cancer. J. Porphyr. Phthalocyanines 5, 161–169 (2001)

    Article  CAS  Google Scholar 

  12. Kadish, K.M., Smith, K.M., Guilard, R. (eds.): Handbook of Porphyrin Science with Application to Chemistry, Physics, Materials Science, Engineering, Biology and Medicine, vol. 4. World Scientific, Singapore (2010)

    Google Scholar 

  13. Miller, J.D., Baron, E.D., Scull, H., Hsia, A., Berlin, J.C., McCormick, T., Colussi, V., Kenney, M.E., Copper, K.D., Oleinick, N.L.: Photodynamic therapy with the phthalocyanine photosensitizer Pc 4: the case experience with preclinical mechanistic and early clinical–translational studies. Toxicol. Appl. Pharmacol. 224, 290–299 (2007)

    Article  CAS  Google Scholar 

  14. Josefsen, L.B., Boyle, R.W.: Photodynamic therapy and the development of metal-based photosensitisers. Met. Based Drugs. 1–24 (2008)

  15. Sibille, A., Lanbert, R., Souquet, J.-C., Sabben, G., Descos, F.: Long-term survival after photodynamic therapy for esophageal cancer. Gastroenterology 108, 337–344 (1995)

    Article  CAS  Google Scholar 

  16. Masilela, N., Nyokong, T.: The synthesis and photophysical properties of water soluble tetrasulfonated, octacarboxylated and quaternised 2,(3)-tetra-(2-pyridiloxy) Ga phthalocyanines. Dyes Pigment. 84, 242–248 (2010)

    Article  CAS  Google Scholar 

  17. Kolarova, H., Lenobel, R., Kolar, P.: Sensitivity of different cell lines to phototoxic effect of disulfonated choroaluminium phthalocyanine. Toxicol. In Vitro 21, 1304–1306 (2007)

    Article  CAS  Google Scholar 

  18. Kolarova, H., Nevrelova, P., Bajgar, R., Jirova, D., Kejlova, K., Strnad, M.: In vitro photodynamic therapy on melanoma cell lines with phthalocyanine. Toxicol. In Vitro 21, 249–253 (2007)

    Article  CAS  Google Scholar 

  19. Malatesti, N., Smith, K., Savoie, H., Greenman, J., Boyle, R.W.: Synthesis and in vitro investigation of cationic 5,15-diphenyl porphyrin-monoclonal antibody conjugates as targeted photodynamic sensitizers. Int. J. Oncol. 28, 1561–1569 (2006)

    CAS  Google Scholar 

  20. Hudson, R., Carcenac, M., Smith, K., Madden, L., Clarke, O.J., Pèlegrin, A., Greenman, J., Boyle, R.W.: The development and characterization of porphyrin isothiocyanate-monoclonal antibody conjugates for photoimmunotherapy. Br. J. Cancer 92, 1442–1449 (2005)

    Article  CAS  Google Scholar 

  21. Ma, C., Ye, K., Yu, S., Du, G., Zhao, Y., Cong, F., Chang, Y., Jiang, W., Cheng, C., Fan, Z., Yu, H., Li, W.: Synthesis and hypochromic effect of phthalocyanines and metal phthalocyanines. Dyes Pigment. 74, 141–147 (2007)

    Article  CAS  Google Scholar 

  22. Boyle, R.W., Dolphin, D.: Structure and biodistribution relationships of photodynamic sensitizers. Photochem. Photobiol. 64, 469–485 (1996)

    Article  CAS  Google Scholar 

  23. Rousseau, J., Boyle, R.W., MacLennan, A.H., Truscott, T.G., van Lier, J.E.: Biodistribution and tumor uptake of [Ga-67] chlorogallium-tetraoctadecyloxy phthalocyanine and its sulfonation products in tumor bearing C-3H mice. Nucl. Med. Biol. 18, 777–782 (1991)

    CAS  Google Scholar 

  24. Staneloudi, C., Smith, K.A., Hudson, R., Malatesti, N., Savoie, H., Boyle, R.W., Greenman, J.: Development and characterization of novel photosensitizer: scFv conjugates for use in photodynamic therapy of cancer. Immunology 120, 512–517 (2007)

    Article  CAS  Google Scholar 

  25. DeRosa, M.C., Crutchley, R.J.: Photosensitized singlet oxygen and its applications. Coord. Chem. Rev. 233–234, 351–371 (2002)

    Article  Google Scholar 

  26. Taquet, J., Frochot, C., Manneville, V., Barberi-Heyob, M.: Phthalocyanines covalently bound to biomolecules for a targeted photodynamic therapy. Curr. Med. Chem. 14, 1673–1687 (2007)

    Article  CAS  Google Scholar 

  27. Cosimelli, B., Roncucci, G., Dei, D., Fantetti, L., Ferroni, F., Ricci, M., Spinelli, D.: Synthesis and antimycotic activity of new unsymmetrical substituted zinc phthalocyanines. Tetrahedron 59, 10025–10030 (2003)

    Article  CAS  Google Scholar 

  28. Banfi, S., Caruso, E., Buccafurni, L., Ravizza, R., Gariboldi, M., Monti, E.: Zinc phthalocyanines-mediated photodynamic therapy induces cell death in adenocarcinoma cells. J. Organomet. Chem. 692, 1269–1276 (2007)

    Article  CAS  Google Scholar 

  29. Sharman, W.M., van Lier, J.E.: Synthesis and photodynamic activity of novel asymmetrically substituted fluorinated phthalocyanines. Bioconjug. Chem. 16, 1166–1175 (2005)

    Article  CAS  Google Scholar 

  30. Sobolev, A.S., Jans, D.A., Rosenkranz, A.A.: Targeted intracellular delivery of photosensitizers. Prog. Biophys. Mol. Biol. 73, 51–90 (2000)

    Article  CAS  Google Scholar 

  31. Atilla, D., Saydan, N., Durmuş, M., Gürek, A.G., Khan, T., Rück, A., Walt, H., Nyokong, T., Ahsen, V.: Synthesis and photodynamic potential of tetra- and octa-triethyleneoxysulfonyl substituted zinc phthalocyanine. J. Photochem. Photobiol. A 186, 298–307 (2007)

    Article  CAS  Google Scholar 

  32. Duan, W., Lo, P.-C., Duan, L., Fong, W.-P., Ng, D.K.P.: Preparation and in vitro photodynamic activity of amphiphilic zinc (II) phthalocyanines substituted with 2-(dimethylamino) ethylthio moieties and their N-alkylated derivatives. Bioorg. Med. Chem. 18, 2672–2677 (2010)

    Article  CAS  Google Scholar 

  33. Wöhrle, D., Eskes, M., Shigehara, K., Yamada, A.: A simple synthesis of 4,5-disubstituted 1,2-dicyanobenzenes and 2,3,9,10,16,17,23,24-octasubstituted phthalocyanines. Synthesis 2, 194–196 (1993)

    Article  Google Scholar 

  34. Ogunsipe, A., Maree, D., Nyokong, T.: Solvent effects on the photochemical and fluorescence properties of zinc phthalocyanine derivatives. J. Mol. Struct. 650, 131–140 (2003)

    Article  CAS  Google Scholar 

  35. Maree, S.E., Nyokong, T.: Syntheses and photochemical properties of octasubstituted phthalocyaninato zinc complexes. J. Porphyr. Phthalocyanines 5, 782–792 (2001)

    Article  CAS  Google Scholar 

  36. Wei, S., Zhou, J., Huang, D., Wang, X., Zhang, B., Shen, J.: Synthesis and Type I/Type II photosensitizing properties of a novel amphiphilic zinc phthalocyanine. Dyes Pigment. 71, 61–67 (2006)

    Article  CAS  Google Scholar 

  37. Young, J.G., Onyebuagu, W.: Synthesis and characterization of di-disubstituted phthalocyanines. J. Org. Chem. 55, 2155–2159 (1990)

    Article  CAS  Google Scholar 

  38. Wei, S., Huang, D., Li, L., Meng, Q.: Synthesis and properties of some novel soluble metallophthalocyanines containing the 3-trifluromethylphenyoxy moiety. Dyes Pigment. 56, 1–6 (2003)

    Article  CAS  Google Scholar 

  39. Erdoğmuş, A., Nyokong, T.: Novel, soluble, fluXoro functional substituted zinc phthalocyanines; synthesis, characterization and photophysicochemical properties. Dyes Pigment. 86, 174–181 (2010)

    Article  Google Scholar 

  40. Huang, J., Chen, N., Huang, J., Liu, E., Xue, J., Yang, S., Huang, Z., Sun, J.: Metal phthalocyanine as photosensitizer for photodynamic therapy (PDT). Preparation, characterization and anticancer activities of an amphiphilic phthalocyanine ZnPcS2P2. Sci. China B 44, 113–122 (2001)

    Article  CAS  Google Scholar 

  41. Siejak, A., Wróbel, D., Siejak, P., Olejarz, B., Ion, R.M.: Spectroscopic and photoelectric investigations of resonance effects in selected sulfonated phthalocyanines. Dyes Pigment. 83, 281–290 (2009)

    Article  CAS  Google Scholar 

  42. Liu, J.-Y., Lo, P.-C., Fong, W.-P., Ng, D.K.P.: Effects of the number and position of the substituents on the in vitro photodynamic activities of glucosylated zinc (II) phthalocyanines. Org. Biomol. Chem. 7, 1583–1591 (2009)

    Article  CAS  Google Scholar 

  43. Liu, J.-Y., Jiang, X.-J., Fong, W.-P., Ng, D.K.P.: Highly photocytotoxic 1,4-dipegylated zinc (II) phthalocyanines. Effects of the chain length on the in vitro photodynamic activities. Org. Biomol. Chem. 6, 4560–4566 (2008)

    Article  CAS  Google Scholar 

  44. Gao, L., Qian, X., Zhang, L., Zhang, Y.: Tetra-trifluoroethoxyl zinc phthalocyanine: potential photosensitizer for use in the photodynamic therapy of cancer. J. Photochem. Photobiol. B 65, 35–38 (2001)

    Article  CAS  Google Scholar 

  45. Gürol, İ., Durmuş, M., Ahsen, V.: Photophysical and photochemical properties of fluorinated and nonfluorinated n-propanol-substituted zinc phthalocyanines. Eur. J. Inorg. Chem. 2010, 1220–1230 (2010)

    Article  Google Scholar 

  46. Seven, O., Dindar, B., Aydemir, S., Cilli, F.: Synthesis, properties and photodynamic activities of some zinc (II) phthalocyanine against Escherichia coli and Staphylococcus aureus. J. Porphyr. Phthalocyanines 12, 953–963 (2008)

    Article  CAS  Google Scholar 

  47. Das, B., Tokunaga, E., Tanaka, M., Sasaki, T., Shibata, N.: Perfluoroisopropyl zinc phthalocyanines conjugated with deoxyribonucleosides: synthesis, photophysical properties and in vitro photodynamic activities. Eur. J. Org. Chem. 2010, 2878–2884 (2010)

    Article  Google Scholar 

  48. Yslas, E.I., Rivarola, V., Durantini, E.N.: Synthesis and photodynamic activity of zinc (II) phthalocyanine derivatives bearing methoxy and trifluoromethylbenzyloxy substitutes in homogeneous and biological media. Bioorg. Med. Chem. 13, 39–46 (2005)

    Article  CAS  Google Scholar 

  49. Zorlu, Y., Ermeydan, M.A., Dumoulin, F., Ahsen, V., Savoie, H., Boyle, R.W.: Glycerol and galactose substituted zinc phthalocyanines. Synthesis and photodynamic activity. Photochem. Photobiol. Sci. 8, 312–318 (2009)

    Article  CAS  Google Scholar 

  50. Saydan, N., Durmuş, M., Dizge, M.G., Yaman, H., Gürek, A.G., Antunes, E., Nyokong, T., Ahsen, V.: Water-soluble phthalocyanines mediated photodynamic effect on mesothelioma cells. J. Porphyr. Phthalocyanines 13, 681–690 (2009)

    Article  CAS  Google Scholar 

  51. Mantareva, V., Kussovski, V., Angelov, I., Borisova, E., Avramov, L., Schnurpfeil, G., Wöhrle, D.: Photodynamic activity of water-soluble phthalocyanine zinc (II) complexes against pathogenic microorganisms. Bioorg. Med. Chem. 15, 4829–4835 (2007)

    Article  CAS  Google Scholar 

  52. Kuznetsova, N., Markarov, D., Yuzhakova, O., Strizhakov, A., Roumbal, Y., Ulanova, L., Krasnovsky, A., Kaliya, O.: Photophysical properties and photodynamic activity of actacationic oxotitanium (IV) phthalocyanines. Photochem. Photobiol. Sci. 8, 1724–1733 (2009)

    Article  CAS  Google Scholar 

  53. Chidawanyika, W., Antunes, E., Nyokong, T.: Synthesis and solvent effects on the photophysicochemical properties of novel cadmium phenoxy phthalocyanines. J. Photochem. Photobiol. A 195, 183–190 (2008)

    Article  CAS  Google Scholar 

  54. Tau, P., Nyokong, T.: Synthesis and electrochemical characterisation of α- and β-tetra-substituted oxo (phthalocyaninato) titanium (IV) complexes. Polyhedron 25, 1802–1810 (2006)

    Article  CAS  Google Scholar 

  55. Zorlu, Y., Dumoulin, F., Durmuş, M., Ahsen, V.: Comparative studies of photophysical and photochemical properties of solketal substituted platinum (II) and zinc (II) phthalocyanine sets. Tetrahedron 66, 3248–3258 (2010)

    Article  CAS  Google Scholar 

  56. Zorlu, Y., Un, I., Dumoulin, F.: Octasolketal-substituted phthalocyanines: synthesis and systematic study of metal effect and substitution pattern on 13C NMR. J. Porphyr. Phthalocyanines 13, 760–768 (2009)

    Article  CAS  Google Scholar 

  57. Durmuş, M., Ahsen, V.: Water-soluble cationic gallium (III) and indium (III) phthalocyanines for photodynamic therapy. J. Inorg. Biochem. 104, 297–309 (2010)

    Article  Google Scholar 

  58. Makarov, D.A., Yuzhakova, O.A., Slivka, L.K., Kuznetsova, N.A., Negrimovsky, V.M., Kaliya, O.L., Lukyanets, E.A.: Cationic Zn and Al phthalocyanines: synthesis, spectroscopy and photosensitizing properties. J. Porphyr. Phthalocyanines 11, 586–595 (2007)

    Article  CAS  Google Scholar 

  59. Liu, M.O., Tai, C., Sain, M., Hu, A.T., Chou, F.: Photodynamic applications of phthalocyanines. J. Photochem. Photobiol. A 165, 131–136 (2004)

    Article  CAS  Google Scholar 

  60. Seotsanyana-Mokhosi, I., Kresfelder, T., Abrahamse, H., Nyokong, T.: The effect of Ge, Si and Sn phthalocyanine photosensitizers on cell proliferation and viability of human oesophageal carcinoma dells. J. Photochem. Photobiol. B 83, 55–62 (2006)

    Article  CAS  Google Scholar 

  61. Ogunbayo, T.B., Nyokong, T.: Photophysical and photochemical properties of Ni(II), Pd(II) and Pt(II) aryloxo and alkylthio derivatised phthalocyanine. J. Mol. Struct. 973, 96–103 (2010)

    Article  CAS  Google Scholar 

  62. Qiu, T., Xu, X., Liu, J., Qian, X.: Novel perfluoroalkyl phthalocyanine metal derivatives: synthesis and photodynamic activities. Dyes Pigment. 83, 127–133 (2009)

    Article  CAS  Google Scholar 

  63. Çoşut, B., Yeşilot, S., Durmuş, M., Kılıç, A., Ahsen, V.: Synthesis and properties of axially-phenoxycyclotriphosphazenyl substituted silicon phthalocyanine. Polyhedron 29, 675–682 (2010)

    Article  Google Scholar 

  64. Leung, S.C.H., Lo, P.-C., Ng, D.K.P., Liu, W.-K., Fung, K.-P., Fong, W.-P.: Photodynamic activity of BAM-SiPc, an unsymmetrical bisamino silicon (IV) phthalocyanine, in tumour-bearing nude mice. Br. J. Pharmacol. 154, 4–12 (2008)

    Article  CAS  Google Scholar 

  65. So, C.-W., Tsang, P.W.K., Lo, P.-C., Seneviratne, C.J., Samaranayake, L.P., Fong, W.-P.: Photodynamic inactivation of Candida albicans by BAM-SiPc. Mycoses 53, 215–220 (2009)

    Article  Google Scholar 

  66. Ishii, K., Shiine, M., Shimizu, Y., Hoshino, S., Abe, H., Sogawa, K., Kobayashi, N.: Control of photobleaching in photodynamic therapy using the photodecarbonylation reaction of ruthenium phthalocyanine complexes via stepwise two-photon excitation. J. Phys. Chem. B 112, 3138–3143 (2008)

    Article  CAS  Google Scholar 

  67. Huang, J.-D., Fong, W.-P., Chan, E.Y.M., Choi, M.T.M., Chan, W.-K., Chan, M.-C., Ng, D.K.P.: Photodynamic activities of a dicationic silicon (IV) phthalocyanine and its bovine serum albumin conjugates. Tetrahedron Lett. 44, 8029–8032 (2003)

    Article  CAS  Google Scholar 

  68. Zhu, Y.-J., Huang, J.-D., Jiang, X.-J., Sun, J.-C.: Novel silicon phthalocyanines axially modified by morpholine: synthesis, complexation with serum protein and in vitro photodynamic activity. Inorg. Chem. Commun. 9, 473–477 (2006)

    Article  CAS  Google Scholar 

  69. Jiang, X.-J., Huang, J.-D., Zhu, Y.-J., Tang, F.-X., Ng, D.K.P., Sun, J.-C.: Preparation and in vitro photodynamic activities of novel axially substituted silicon (IV) phthalocyanines and their bovine serum albumin conjugates. Bioorg. Med. Chem. Lett. 16, 2450–2453 (2006)

    Article  CAS  Google Scholar 

  70. Lo, P.-C., Huang, J.-D., Cheng, D.Y.Y., Chan, E.Y.M., Fong, W.-P., Ko, W.-H., Ng, D.K.P.: New amphiphilic silicon (IV) phthalocyanines as efficient photosensitizers for photodynamic therapy: synthesis, photophysical properties, and in vitro photodynamic activities. Chem. Eur. J. 10, 4831–4838 (2004)

    Article  CAS  Google Scholar 

  71. Huang, J.-D., Lo, P.-C., Chen, Y.-M., Lai, J.C., Fong, W.-P., Ng, D.K.P.: Preparation and in vitro photodynamic activity of novel silicon (IV) phthalocyanines conjugated to serum albumins. J. Inorg. Biochem. 100, 946–951 (2006)

    Article  CAS  Google Scholar 

  72. Huang, J.-D., Jiang, X.-J., Shen, X.-M., Tang, Q.-Q.: Synthesis and photobiological properties of novel silicon (IV) phthalocyanines axially modified by paracetamol and 4-hydroxyphenylacetamide. J. Porphyr. Phthalocyanines 13, 1227–1232 (2009)

    Article  CAS  Google Scholar 

  73. Lee, P.P.S., Lo, P.-C., Chan, E.Y.M., Fong, W.-P., Ko, W.-H., Ng, D.K.P.: Synthesis and in vitro photodynamic activity of novel galactose-containing phthalocyanines. Tetrahedron Lett. 46, 1551–1554 (2005)

    Article  CAS  Google Scholar 

  74. Rijcken, C.J.F., Hofman, J.-W., van Zeeland, F., Hennink, W.E., van Nostrum, C.F.: Photosensitiser-loaded biodegradable polymeric micelles: preparation, characterization and in vitro PDT efficacy. J. Control. Release 124, 144–153 (2007)

    Article  CAS  Google Scholar 

  75. Lo, P.-C., Chan, C.M.H., Liu, J.-Y., Fong, W.-P., Ng, D.K.P.: Highly photocytotoxic glucosylated silicon (IV) phthalocyanines. Effects of peripheral chloro substitution on the photophysical and photodynamic properties. J. Med. Chem. 50, 2100–2107 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China for the Distinguished Young Scholar Fund to C. Zhang (50925207), the Ministry of Science and Technology of China for the International Science Linkages Program (2009DFA50620) and in part through the Special Fund for International Collaboration & Exchange of Jiangsu Province (BZ2008049).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi Zhang.

Glossary

Pc

Phthalocyanine

Nc

Naphthalocyanine

PDT

Photodynamic therapy is a binary therapy involving the combination of light and a chemical substance (a photosensitizer), which results in cell damage or death [14]

ΦF

Fluorescence quantum yields are the ratio of photons absorbed to photons emitted through fluorescence. They could be determined by the comparative method (Eq. 1): ΦF = ΦF (Std) · FA Std η 2/F Std 2Std , where F and F Std are the areas under the fluorescence emission curves of the samples and the reference, respectively; A and A Std are the respective absorbance of the sample and standard at the excitation wavelengths, respectively; η and η Std are the refractive indices of solvents used for the sample and standard, respectively [63]. The sample and the standard should be excited at the same relevant wavelength

τF

Fluorescence lifetimes refer to the average time that a molecule remains in its excited state before returning to its ground state. They were evaluated using Eq. 2: ΦF = τF0, where τF is the fluorescence lifetime. The τ0 is the natural radiative life time which can be determined using PhotochemCAD program using the Strickler–Berg equation [57]

ΦT

Triplet quantum yields usually were determined using the comparative method based on the triplet decay, using Eq. 3: Φ SampleT  = Φ StdT  · ΔA SampleT  · ε StdA StdT  · ε Sample, where ΔA SampleT and ΔA StdT are the changes in the triplet state absorbance of metal Pcs and the standard, respectively. ε Sample and ε Std are the triplet state extinction coefficients for the metal Pcs and the standard, respectively. Φ StdT is the triplet state quantum yield for the standard [16]. Triplet lifetimes (τT) were determined by exponential fitting of the kinetic curves using OriginPro 7.5 software [53]

ΦΔ

Singlet oxygen quantum yield is a key property of a photosensitizer. It was defined as the number of molecules of 1O2 molecules generated for each photon absorbed by a photosensitizer. Equation 4 was used for the calculations of the singlet oxygen yield: ΦΔ = Φ StdΔ  · R · I Stdabs /R Std · I abs, where Φ StdΔ is the singlet oxygen quantum yield for the standard. R and R Std are the trap photobleaching rates in the presence of studied samples and references, respectively. I abs and I Stdabs are the intensities of light absorption by the studied samples and the standards, respectively [58]

DBU

1,8-Diazabicyclo-[5,4,0]undec-7-ene

IC50

Half maximal inhibitory concentration, which is defined as the dye concentration required to kill 50% of the cells

DMSO

Dimethylsulfoxide

THF

Tetrahydrofuran

DMF

Dimethylformamide

DPBF

1,3-Diphenylisobenzofuran

HOMO, LUMO

Highest occupied molecular orbital and the lowest unoccupied molecular orbital, respectively. The energy difference between the HOMO and LUMO is termed as the band gap

LD90

Lethal dose 90%. The estimated dose at which 90% of the cells is expected to die

SNO

Human oesophageal carcinoma cells

BSA

Bovine serum albumin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, A., Long, L. & Zhang, C. Synthesis and properties of photo-activable phthalocyanines: a brief overview. J Incl Phenom Macrocycl Chem 71, 1–24 (2011). https://doi.org/10.1007/s10847-010-9918-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-010-9918-x

Keywords

Navigation