Skip to main content
Log in

Binding properties of heptakis-(2,6-di-O-methyl)-β-cyclodextrin and mono-(3,6-anhydro)-β-cyclodextrin: a polarimetric study

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

The binding constants for the inclusion complexes formed between heptakis-(2,6-di-O-methyl)-β-cyclodextrin (MβCD) and mono-(3,6-anhydro)-β-cyclodextrin (AβCD) with a set of suitably selected organic guests, were measured by means of polarimetry. Measurements were carried out at various pH values in order to ensure the correct protonation state for ionizable guests. Experimental data suggest that the binding properties of MβCD may be rationalized considering the less polar and more hydrophobic character of the cavity, although similar variations in conformational/dynamic behaviour occur as for native βCD. On the other hand, AβCD shows some similarities with αCD, due to the significant distortion in the shape and reduction in size of the macro cycle, as confirmed also by simple computational models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Papers and reviews published on the topic are virtually countless, and appear at the rithm of thousands every year! For a few significant reviews see for instance ref. [411].

  2. The K value for 4 found by us is much lower than the one previously measured calorimetrically by Bertrand (380 M−1, see ref. 16), but at a different pH value.

  3. Noticeably, guests 410 constitute on the whole a representative set of nitrobenzene derivatives. One would expect data could be subjected to some sort of LFER (such as Hammett or Taft) correlation analysis. However, these systems are so strictly affected by the occurrence of specific (hydrogen bond, for instance) interactions that this approach is matter-of-factly unsuitable. In particular, on considering p-nitroanilines 610, we have to assume that possible variations of electronic effects for the aromatic moiety are almost negligible.

  4. A pictorial representation of a typical trend for experimental data can be found in ref. [48].

References

  1. Easton, C.J., Lincoln, S.F.: Chiral discrimination by modified cyclodextrins. Chem. Soc. Rev 25, 163–170 (1996)

    Article  CAS  Google Scholar 

  2. Connors, K.A.: The stability of cyclodextrin complexes in solution. Chem. Rev. 97, 1325–1357 (1997)

    Article  CAS  Google Scholar 

  3. Rekharsky, M.V., Inoue, Y.: Complexation thermodynamics of cyclodextrins. Chem. Rev. 98, 1875–1917 (1998) and (references therein)

    Article  CAS  Google Scholar 

  4. Szejtli, J.: Introduction and general overview of cyclodextrin. Chem. Rev. 98, 1743–1753 (1998)

    Article  CAS  Google Scholar 

  5. Takahashi, K.: Organic reactions mediated by cyclodextrins. Chem. Rev. 98, 2013−2033 (1998)

    Article  CAS  Google Scholar 

  6. Fakayode, S.O., Lowry, M., Fletcher, K.A., Huang, X.D., Powe, A.M., Warner, I.M.: Cyclodextrins host-guest chemistry in analytical and environmental chemistry. Curr. Anal. Chem. 3, 171–181 (2007)

    Article  CAS  Google Scholar 

  7. Schurig, V., Wistuba, D.: Recent innovations in enantiomer separation by electrochromatography utilizing modified cyclodextrins as stationary phases. Electrophoresis 20, 2313–2328 (1999)

    Article  CAS  Google Scholar 

  8. D’Anna, F., Lo Meo, P., Riela, S., Noto, R.: Cyclodextrins: heterocycic molecules able to perform chiral recognition (part I). Targets Heterocycl. Chem. 9, 1–38 (2005)

    Google Scholar 

  9. D’Anna, F., Lo Meo, P., Riela, S., Noto, R.: Cyclodextrins: heterocycic molecules able to perform chiral recognition (part II). Targets Heterocycl. Chem. 10, 91–113 (2006)

    Google Scholar 

  10. Vyas, A., Saraf, S., Saraf, S.J.: Cyclodextrin based novel drug delivery systems. J. Incl. Phenom. Macrocycl. Chem. 62, 23–42 (2008)

    Article  CAS  Google Scholar 

  11. Harada, A., Takashima, Y., Yamaguchi, H.: Cyclodextrin-based supramolecular polymers. Chem. Soc. Rev. 38, 875–882 (2009)

    Article  CAS  Google Scholar 

  12. Tabushi, I., Kiyosuke, Y., Sugimoto, T., Yamamura, K.J.J.: Approach to the aspects of driving force of inclusion by alpha-cyclodextrin. J. Am. Chem. Soc. 100, 916–919 (1978)

    Article  CAS  Google Scholar 

  13. Liu, L., Guo, Q.X.J.: The driving forces in the inclusion complexation of cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. 42, 1–14 (2002)

    Article  CAS  Google Scholar 

  14. Schmidtchen, F.P.: The anatomy of the energetics of molecular recognition by calorimetry: Chiral discrimination of camphor by alpha-cyclodextrin. Chem. Eur. J. 8, 3522–3529 (2002)

    Article  CAS  Google Scholar 

  15. Lo Meo, P., D’Anna, F., Riela, S., Gruttadauria, M., Noto, R.: Spectrophotometric study on the thermodynamics of binding of alpha- and beta-cyclodextrin towards some p-nitrobenzene derivatives. Org. Biomol. Chem. 1, 1584–1590 (2003)

    Article  CAS  Google Scholar 

  16. Matsui, Y., Mochida, K.: Binding forces contributing to the association of cyclodextrin with alcohol in an aqueous Solution. Bull. Chem. Soc. Jpn. 52, 2808–2814 (1979)

    Article  CAS  Google Scholar 

  17. D’Anna, F., Lo Meo, P., Riela, S., Gruttadauria, M., Noto, R.: Spectrophotometric determinations of binding constants between cyclodextrins and aromatic nitrogen substrates at various pH values. Tetrahedron 57, 6823–6827 (2001)

    Article  Google Scholar 

  18. Lo Meo, P., D’Anna, F., Riela, S., Gruttadauria, M., Noto, R.: Spectrophotometric determination of binding constants between some aminocyclodextrins and nitrobenzene derivatives at various pH values. Tetrahedron 58, 6039–6045 (2002)

    Article  CAS  Google Scholar 

  19. Ribeiro, J.P., Bacchi, S., Dell’Anna, G., Morando, M., Cañada, F.J., Cozzi, F., Jimenez-Barbero, J.: A combined NMR, computational, and HPLC study of the inclusion of aromatic and fluoroaromatic compounds in cyclodextrins as a model for studying carbohydrate–aromatic interactions. Eur. J. Org. Chem. 5891–5898 (2008)

  20. Lo Meo, P., D’Anna, F., Gruttadauria, M., Riela, S., Noto, R.: Thermodynamics of binding between alpha- and beta-cyclodextrins and some p-nitro-aniline derivatives: reconsidering the enthalpy-entropy compensation effect. Tetrahedron 60, 9099–9111 (2004)

    Article  CAS  Google Scholar 

  21. Dodziuk, H.J.: Rigidity versus flexibility. A review of experimental and theoretical studies pertaining to the cyclodextrin nonrigidity. J. Mol. Struct. 614, 33–45 (2002)

    Article  CAS  Google Scholar 

  22. Kozár, T., Venanzi, C.A.: Reconsidering the conformational flexibility of beta-cyclodextrin. J. Mol. Struct. (Theochem) 395396, 451–468 (1997)

    Article  Google Scholar 

  23. Mayer, B., Marconi, G., Klein, C., Kohler, G., Wolschann, P.J.: Structural analysis of host-guest systems. Methyl-substituted phenols in beta-cyclodextrin. Inclusion Phenom. Mol. Recognit. Chem. 29, 79–93 (1997) and (references therein)

    Google Scholar 

  24. Raffaini, G., Ganazzoli, F.: Hydration and flexibility of alpha-, beta-, gamma- and delta-cyclodextrin: a molecular dynamics study. Chem. Phys. 333, 128–134 (2007)

    Article  CAS  Google Scholar 

  25. Usha, M.G., Wittebort, R.J.J.: Structural and dynamic studies of the hydrate exchangeable hydrogens, and included molecules in beta-cyclodextrins and gamma-cyclodextrins by powder and single crystal deuterium magnetic-resonance. J. Am. Chem. Soc. 114, 1541–1548 (1992)

    Article  CAS  Google Scholar 

  26. Inoue, Y., Okuda, T., Chûjô, R.: A high-resolution CP-Mass C-13-NMR study of solid-state cyclomalohexaose inclusion-complexes chemical-shifts and structure of the host cyclomaltohexaose. Carbohydr. Res. 141, 179–190 (1985)

    Article  CAS  Google Scholar 

  27. Yamamoto, Y., Onda, M., Takahashi, Y., Inoue, Y., Chûjô, R.: Determinatin of the host-guest geometry in the inclusion complexes of cyclomalto-oligosaccharides with para-nitrophenol in solution. Carbohydr. Res. 182, 41–52 (1988)

    Article  CAS  Google Scholar 

  28. Inoue, Y., Kuan, F.H., Takahashi, Y., Chûjô, R.: CP-MAS C-13-NMR study of cyclomaltohexaose and cyclomatohep. Carbohydr. Res. 135, C12–C16 (1985)

    Article  CAS  Google Scholar 

  29. Inoue, Y., Kuan, F.H., Chûjô, R.: CP-MAS C-13-NMR study of some solid state inclusion complexes of cyclomalooligosaccharides with parasubstituted benzenes. Carbohydr. Res. 159, 1–10 (1987)

    Article  CAS  Google Scholar 

  30. Dodziuk, H., Nowiński, K.: Structure of cyclodextrins and their complexes. 2. Do cyclodextrins have a rigid truncated-cone structure? J. Mol. Struct. (Theochem) 110, 61–68 (1994)

    Article  CAS  Google Scholar 

  31. Rekharsky, M.V., Yamamura, H., Kawai, M., Inoue, I.J.: Complexation and chiral recognition thermodynamics of gamma-cyclodextrin with N-acetyl- and N-carbobenzyloxy-dipeptides possessing two aromatic rings. Org. Chem. 68, 5228–5235 (2003)

    Article  CAS  Google Scholar 

  32. Lo Meo, P., D’Anna, F., Riela, S., Gruttadauria, M., Noto, R.: Binding equilibria between beta-cyclodextrin and p-nitro-aniline derivatives: the first systematic study in mixed water-methanol solvent systems. Tetrahedron 65, 2037–2042 (2009)

    Article  CAS  Google Scholar 

  33. Khan, A.R., Forgo, P., Stine, K.J., D’Souza, V.T.: Methods for selective modifications of cyclodextrins. Chem. Rev. 98, 1977–1996 (1998)

    Article  CAS  Google Scholar 

  34. Lo Meo, P., D’Anna, F., Riela, S., Gruttadauria, M., Noto, R.: Binding properties of mono-(6-deoxy-6-amino)-beta-cyclodextrin towards p-nitroaniline derivatives: a polarimetric study. Tetrahedron 65, 10413–10417 (2009)

    Article  CAS  Google Scholar 

  35. Cramer, F., Mackensen, G., Sensse, K.: On ring compounds. XX. ORD-spectra and conformation of the glucose ring in cyclodextrins. Chem. Ber. 102, 494–508 (1969)

    Article  CAS  Google Scholar 

  36. Fujita, K., Yamamura, H., Imoto, T., Tabushi, I.: Preparation of a 3A,6A-anhydro-beta-cyclodextrin and its taka amylolysis. Chem. Lett. 17, 543–546 (1988)

    Google Scholar 

  37. Bertrand, G.L., Faulkner, J.R., Han, S.M., Armstrong, D.W.J.: Substituent effects on the binding of phenols to cyclodextrins in aqueous solution. J. Phys. Chem. 93, 6863–6867 (1989)

    Article  CAS  Google Scholar 

  38. Fujita, K., Okabe, Y., Ohta, K., Yamamura, H., Tahara, T., Nogami, Y., Koga, T.: Dependence of guest-binding ability on cavity shape of deformed cyclodextrins. Tetrahedron Lett. 37, 1825–1828 (1996)

    Article  CAS  Google Scholar 

  39. de Vries, E.J.C., Caira, M.R.: A structural and thermal investigation of the inclusion of parabens in heptakis(2,6-di-O-methyl)cyclomaltohepta. Carbohyd. Res. 343, 2433–2438 (2008)

    Article  Google Scholar 

  40. Song, L.X., Wang, H.M., Xu, P., Yang, Y., Zhang, Z.Q.: Experimental and Theoretical Studies on the Inclusion Complexation of Syringic Acid with alpha-, beta-, gamma- and heptakis(2,6-di-O-methyl)-beta-cyclodextrin. Chem. Pharm. Bull. 56, 468–474 (2008)

    Article  CAS  Google Scholar 

  41. Bortolus, P., Marconi, G., Monti, S., Mayer, B.J.: Chiral discrimination of camphorquinone enantiomers by cyclodextrins: a spectroscopic and photophysical study. Phys. Chem. A 106, 1686–1694 (2002)

    Article  CAS  Google Scholar 

  42. Gelb, R.I., Schwartz, L.M., Laufer, D.A.: Adamantan-1-ylamine and adamantan-1-ylamine hydrochloride complexes with cycloamyloses. J. Chem. Soc., Perkin Trans. 2, 15–21 (1984)

    Google Scholar 

  43. Eftink, M.R., Andy, M.L., Bystrom, K., Perlmutter, H.D., Kristol, D.S.J.: Cyclodextrin inclusion complexes—studies of the variation in the size of alicyclic guests. J. Am. Chem. Soc. 111, 6765–6772 (1989)

    Article  CAS  Google Scholar 

  44. Carranzana, J., Jover, A., Meijide, F., Soto, V.H., Vazquez Tato, J.J.: Complexation of adamantyl compounds by beta-cyclodextrin and monoaminoderivatives. J. Phys. Chem. B 109, 9719–9726 (2005)

    Article  Google Scholar 

  45. Lü, T.-X., Zhand, D.-B., Dong, S.-J., Study on dynamic repeatability, linearity and performance improvement of a force transduce. J. Chem. Soc., Faraday Trans. 2. 85, 1439–1445 (1989)

    Article  CAS  Google Scholar 

  46. Bonora, G.M., Fornasier, R., Scrimin, P., Tonellato, U.: Induced circular dichroism of conjugated cyclohexenones included in native or modified cyclomaltooligosaccharides. J. Chem. Soc., Perkin Trans.2, 367–369 (1985)

    Google Scholar 

  47. Tee, O.S., Mazza, C., Du, X.-X.: Chain length effects in the cleavage of aryl esters by cyclodextrins. Different transition states for m- and pnitrophenyl alkanoates. J. Org. Chem. 55, 3603–3609 (1990)

    Google Scholar 

  48. Lo Meo, P., D’Anna, F., Riela, S., Gruttadauria, M., Noto, R.: Polarimetry as a useful tool for the determination of binding constants between cyclodextrins and organic guest molecules. Tetrahedron Lett. 47, 9099–9102 (2006)

    Article  CAS  Google Scholar 

  49. Lo Meo, P., D’Anna, F., Riela, S., Gruttadauria, M., Noto, R.: Host-guest interactions involving cyclodextrins: useful complementary insights achieved by polarimetry. Tetrahedron 63, 9163–9171 (2007)

    Article  CAS  Google Scholar 

  50. Rees, D.A.: Conformational analysis of polysaccharides. Part V. The characterization of linkage conformations (chain conformations) by optical rotation at a single wavelength. Evidence for distortion of cyclohexa-amylose in aqueous solution. Optical rotation and the amylose conformation J. Chem. Soc. 877–884 (1970)

  51. Rees, D.A., Thorn, D.: Polysaccharide conformation. Part 10.1 solvent and temperature effects on the optical rotation and conformation of model carbohydrates. J. Chem. Soc., Perkin Trans. 2, 191–201 (1977)

    Google Scholar 

  52. Fisher, E.: Ueber die glucoside der alkohole. Ber. Chem. Ges. 26, 2400–2412 (1893)

    Article  Google Scholar 

  53. Riiber, C.N.: Lösungsvolumen und refraktionskonstante des alpha- und beta-Methylglykosids. (IV.) mitteilung über mutarotation. Ber. Chem. Ges. 57, 1797–1799 (1924)

    Article  Google Scholar 

  54. Reeves, R.E.J.: Methyl 2,6-Dimethyl-α-d-glucopyranoside. Am. Chem. Soc. 70, 259–260 (1948)

    Article  CAS  Google Scholar 

  55. Foster, A.B., Overend, W.G., Vaughan, G.: Structure and reactivity of anhydro-sugars. Part III. An interpretation of some reactions of 3:6-anhydro-d-hexoses. J. Chem. Soc. 3625–3629 (1954)

  56. Inoue, Y., Takahashi, Y., Chûjô, R.: The host-guest orientation in the inclusion complex of hexakis(2,3,6-tri-O-methyl)cyclomaltohexaose with p-nitrophenol in aqueous solution. Carbohydr. Res. 144, C9–C11 (1985)

    Article  CAS  Google Scholar 

Download references

Acknowledgment

University of Palermo (funds for selected research topics) is gratefully acknowledged for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Lo Meo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meo, P.L., D’Anna, F., Riela, S. et al. Binding properties of heptakis-(2,6-di-O-methyl)-β-cyclodextrin and mono-(3,6-anhydro)-β-cyclodextrin: a polarimetric study. J Incl Phenom Macrocycl Chem 71, 121–127 (2011). https://doi.org/10.1007/s10847-010-9915-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-010-9915-0

Keywords

Navigation