Skip to main content
Log in

Determination of the surface acidity of a free-base corrole in a self-assembled monolayer

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Mixed self-assembled monolayers (SAMs) containing a corrole moiety have been prepared to examine their electrochemical properties and surface acidity, with the eventual goal of biosensor development. Mixed SAMs consisting of 6-mercapto-hexanol (6-MHO) and 8-amino-1-octanethiol (8-AOT) in varying ratios were modified with a free-base corrole and characterized via Osteryoung square-wave voltammetry and contact angle measurements. The surface acidity of the free-base corrole was determined using an electrochemical titration method, with pK a values established at 6.4 when using Fe(CN) 4−6 /Fe(CN) 3−6 as a redox probe and at 6.7 when using iodide, and assigned to the CorH4 + ⇌ CorH3 + H+ equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gross, Z., Gray, H.B.: How do corroles stabilize high-valent metals? Comment. Inorg. Chem. 27, 61–72 (2006). doi:10.1080/02603590600666256

    Article  CAS  Google Scholar 

  2. Gross, Z., Galili, N., Saltsman, I.: The first direct synthesis of corroles from pyrrole. Angew. Chem. Int. Ed. 38, 1427–1429 (1999)

    Article  CAS  Google Scholar 

  3. Paolesse, R., Januiqod, L., Nurco, D.J., Mini, S., Sagone, F., Boschi, T., Smith, K.M.: 5,10,15-Triphenylcorrole: a product from a modified Rothemund reaction. Chem. Commun. 1307–1308 (1999). doi:10.1039/a903247i

  4. Gross, Z., Gray, H.B.: Oxidations catalyzed by metallo-corroles. Adv. Synth. Catal. 346, 165–170 (2004). doi:10.1002/adsc.200303145

    Article  CAS  Google Scholar 

  5. Meier-Callahan, A.E., DiBilio, A.J., Simkhovich, L., Mahammad, A., Goldberg, I., Gray, H.B., Gross, Z.: Chromium corroles in four oxidation states. Inorg. Chem. 40, 6788–6793 (2001). doi:10.1021/ic010723z

    Article  CAS  Google Scholar 

  6. Mahammad, A., Gray, H.B., Meier-Callahan, A.E., Gross, Z.: Aerobic oxidations catalyzed by chromium corroles. J. Am. Chem. Soc. 125, 1162–1163 (2003). doi:10.1021/.ja028216j

    Article  Google Scholar 

  7. Collman, J.P., Kaplum, M., Decréau, R.A.: Metal corroles as electrocatalysts for oxygen reduction. Dalton Trans. 554–559 (2006). doi:10.1039/b512982f

  8. Aviv, I., Gross, Z.: Iron(III) corroles and porphyrins as superior catalysts for the reactions of diazoacetates with nitrogen- or sulfur-containing nucleophilic substrates: synthetic uses and mechanistic insights. Chem. Eur. J. 14, 3995–4005 (2008). doi:10.1002/chem.200701885

    Article  CAS  Google Scholar 

  9. Simkhovich, L., Gross, Z.: Iron(IV) corroles are potent catalysts for aziridination of olefins by chloramine-T. Tetrahedron Lett. 42, 8089–8092 (2001). doi:10.1016/S0040-4039(01)01717-8

    Article  CAS  Google Scholar 

  10. Barbe, J.-M., Canard, G., Brandès, S., Guilard, R.: Organic–inorganic hybrid sol-gel materials incorporating functionalized cobalt(III) corroles for the selective detection of CO. Angew. Chem. Int. Ed. 117, 3163–3166 (2005). doi:10.1002/ange.200463009

    Article  Google Scholar 

  11. Radecki, J., Stenka, I., Dolusic, E., Dehaen, W., Plavec, J.: Potentiometric discrimination of neutral forms of nitrophenol isomers by liquid membrane isomers incorporated with corroles. Comb. Chem. High-throughput Screen. 7, 375–381 (2004)

    CAS  Google Scholar 

  12. Radecki, J., Stenka, I., Dolusic, E., Dehaen, W.: Corroles as receptors in liquid membrane electrodes and their potentiometric response towards salicylic acid. Electrochim. Acta 51, 2282–2288 (2006). doi:10.1016/j.electacta.2005.02.152

    Article  CAS  Google Scholar 

  13. Zhang, X.-B., Han, Z.-X., Fang, Z.-H., Shen, G.-L., Yu, R.-Q.: 5,10,15-Tris(pentafluorophenyl)corrole as highly selec-tive neutral carrier for a silver ion-sensitive electrode. Anal. Chim. Acta 562, 210–215 (2006). doi:10.1016/j.aca.2006.01.056

    Article  CAS  Google Scholar 

  14. He, C.-H., Ren, F.-L., Zhang, X.-B., Han, Z.-X.: A fluorescent chemical sensor for Hg(II) based on a corrole derivative in a PVC matrix. Talanta 70, 364–369 (2006). doi:10.1016/j.talanta.2006.02.051

    Article  CAS  Google Scholar 

  15. Walker, D., Chappel, S., Mahammad, A., Weaver, J.J., Brunschwig, B.S., Winkler, J.R., Gray, H.B., Zaban, A., Gross, Z.: Corrole-sensitized TiO2 solar cells. J. Porphyr. Phthalocyanines 10, 1259–1262 (2006)

    Article  CAS  Google Scholar 

  16. Agadjanian, H., Ma, J., Rentsendorj, A., Valluripalli, V., Hwang, J.Y., Mahammad, A., Farkas, D.L., Gray, H.B., Gross, Z., Medina-Kauwe, L.K.: Tumor detection and elimination by a targeted gallium corrole. Proc. Natl. Acad. Sci. USA 106, 6105–6110 (2009). doi:10.1073/pnas.0901531106

    Article  CAS  Google Scholar 

  17. Aviv-Harel, I., Gross, Z.: Aura of corroles. Chem. Eur. J. 15, 8382–8394 (2009). doi:10.1002/chem.200900920

    Article  CAS  Google Scholar 

  18. Aviv, I., Gross, Z.: Corrole-based applications. Chem. Commun. 1987–1999 (2007). doi:10.1039/b618482k

  19. Szymańska, I., Stobiecka, M., Orlewska, C., Rohand, T., Janssen, D., Dehaen, W., Radecka, H.: Electroactive dipyrro-methene-Cu(II) self-assembled monolayers: complexation reaction on the surface of gold electrodes. Langmuir 24, 11239–11245 (2008). doi:10.1021/la801164f

    Article  Google Scholar 

  20. Szymańska, I., Orlewska, C., Janssen, D., Dehaen, W., Radecka, H.: Dipyrromethene-dodecanethiol self-assembled monolayers deposited onto gold electrodes. Electrochim. Acta 53, 7932–7940 (2008). doi:10.1016/j.electacta.2008.06.002

    Article  Google Scholar 

  21. Kurzątkowska, K., Shpakovsky, D., Radecki, J., Radecka, H., Jingwei, Z., Milaeva, E.: Iron(III) porphyrin bearing 2,6-di-tert-butylphenol pendants deposited onto gold electrodes for amperometric determination of l-histidine. Talanta 78, 126–131 (2009). doi:10.1016/j.talanta.2008.10.051

    Article  Google Scholar 

  22. Kurzątkowska, K., Dolusic, E., Dehaen, W., Sieroń-Stoltny, K., Sieroń, A., Radecka, H.: Gold electrode incorporating corrole as an ion-channel mimetic sensor for determination of dopamine. Anal. Chem. 81, 7397–7405 (2009). doi:10.1021/ac901213h

    Article  Google Scholar 

  23. Jimenez, H.R., Julve, M., Faus, J.: A solution study of the protonation and deprotonation equilibria of 5,10,15,20-tetra(p-sulphonatophenyl) porphyrin. Stability of its magnesium(II), copper(II) and zinc(II) complexes. J. Chem. Soc., Dalton Trans. 1945–1949 (1991). doi:10.1039/DT9910001945

  24. Farjtabar, A., Gharib, F.: Solvent effect on protonation constants of 5,10,15,20-tetrakis(p-sulphonatophenyl) porphyrin in different aqueous solutions of methanol and ethanol. J. Solut. Chem. 39, 231–244 (2010). doi:10.1007/s10953-010-9496-y

    Article  CAS  Google Scholar 

  25. Mahammad, A., Weaver, J.J., Gray, H.B., Abdelas, M., Gross, Z.: How acidic are corroles and why? Tetrahedron Lett. 44, 2077–2079 (2003). doi:10.1016/S0040-4039(03)00174-6

    Article  Google Scholar 

  26. Shen, J., Shao, J., Ou, Z., Wenbo, E., Koszarna, B., Gryko, D.T., Kadish, K.M.: Electrochemistry and spectroelectrochemistry of meso-substituted free-base corroles in nonaqueous media: reactions of (Cor)H3, [(Cor)H4]+, and [(Cor)H2]−. Inorg. Chem. 45, 2251–2265 (2006). doi:10.1021/ic051729h

    Article  CAS  Google Scholar 

  27. Ou, Z., Shen, J., Shao, J., Wenbo, E., Gałęzowski, M., Gryko, D.T., Kadish, K.M.: Protonated free-base corroles: acidity, electrochemistry, and spectroelectrochemistry of [(Cor)H4]+, [(Cor)H5]2+, and [(Cor)H6]3+. Inorg. Chem. 46, 2775–2786 (2007). doi:10.1021/ic0617893

    Article  CAS  Google Scholar 

  28. Kawaguchi, T., Yasuda, H., Shimazu, K.: Electrochemical quartz-crystal microbalance investigation of the reductive desorption of self-assembled monolayers of alkanethiols and mercaptoalkanoic acids on Au. Langmuir 16, 9830–9840 (2000). doi:10.1021/la000756b

    Article  CAS  Google Scholar 

  29. Kakiuchi, T., Iida, M., Imabayashi, S., Niki, K.: Double-layer capacitance titration of self-assembled monolayers of ω-functionalized alkanethiols on Au(111) surface. Langmuir 16, 5397–5401 (2000). doi:10.1021/la991358f

    Article  CAS  Google Scholar 

  30. Zhao, J., Luo, L., Yang, X., Wang, E., Dong, S.: Determination of surface pK a of SAM using an electrochemical titration method. Electroanalysis 11, 1108–1111 (1999). doi:10.1002/(SICI)1521-4109(199911)11:15<1108:AID-ELAN1108>3.0.CO;2-Z

    Article  CAS  Google Scholar 

  31. Smalley, J.F., Chalfant, K., Feldberg, S.W., Nahir, T.M., Bowden, E.F.: An indirect laser-induced temperature jump determination of the surface pK a of 11-mercaptoundecanoic acid monolayers self-assembled on gold. J. Phys. Chem. B 103, 1676–1685 (1999). doi:10.1021/jp983325z

    Article  CAS  Google Scholar 

  32. Fears, K.P., Creager, S.E., Latour, R.A.: Determination of the surface pK a of carboxylic and amine-terminated alkane-thiols using surface plasmon resonance spectroscopy. Langmuir 24, 837–843 (2008). doi:10.1021/la701760s

    Article  CAS  Google Scholar 

  33. Ju, H., Dai, Z.: Effect of chain length on the surface proper-ties of ω-carboxy alkane thiol self-assembled monolayers. Phys. Chem. Chem. Phys. 3, 3769–3773 (2001). doi:10.1039/b104570a

    Google Scholar 

  34. Saby, C., Ortiz, B., Champagne, G.Y., Bèlanger, D.: Electrochemical modification of glassy carbon electrode using aromatic diazonium salts. 1. Blocking effect of 4-nitrophenyl and 4-carboxyphenyl groups. Langmuir 13, 6805–6813 (1997). doi:10.1021/la961033o

    Article  CAS  Google Scholar 

  35. Abiman, P., Crossley, A., Wildgoose, G.G., Jones, J.H., Compton, R.G.: Investigating the thermodynamic causes behind the anomalously large shifts in pK a values of benzoic acid-modified graphite and glassy carbon surfaces. Langmuir 23, 7847–7852 (2007). doi:10.1021/la7005277

    Article  CAS  Google Scholar 

  36. Schweiss, R., Pleul, D., Simon, F., Janke, A., Welzel, P.B., Voit, B., Knoll, W., Werner, C.: Electrokinetic potentials of binary self-assembled monolayers on gold: acid-base reactions and double layer structure. J. Phys. Chem. B 108, 2910–2917 (2004). doi:10.1021/jp035724m

    Article  CAS  Google Scholar 

  37. Burgess, I., Seivewright, B., Lennox, B.R.: Electric field driven protonation/deprotonation of self-assembled mono-layers of acid-terminated thiols. Langmuir 22, 4420–4428 (2006). doi:10.1021/la052767g

    Article  CAS  Google Scholar 

  38. Ngo, T.H., Van Rossom, W., Dehaen, W., Maes, W.: Reductive demetallation of Cu-corroles—a new protective strategy towards functional free-base corroles. Org. Biomol. Chem. 7, 439–443 (2009). doi:10.1039/b819185a

    Article  CAS  Google Scholar 

  39. Ngo, T.H., Puntoriero, F., Nastasi, F., Robeyns, K., Van Meervelt, L., Campagna, S., Dehaen, W., Maes, W.: Syn-thetic, structural and photophysical exploration of meso-pyrimidinyl-substituted AB2-corroles. Chem. Eur. J. 16, 5691–5705 (2010). doi:10.1002/chem.201000008

    CAS  Google Scholar 

  40. Wang, Q., Zhi, F., Wang, W., Xia, X., Liu, X., Meng, F., Song, Y., Yang, C., Lu, X.: Direct electron transfer of thiol-derivatized tetraphenylporphyrin assembled on gold electrodes in an aqueous solution. J. Phys. Chem. C 113, 9359–9367 (2009). doi:10.1021/jp803725x

    Article  CAS  Google Scholar 

  41. Shen, J., Ou, Z., Shao, J., Gałęzowski, M., Gryko, D.T., Kadish, K.M.: Free-base corroles: determination of deprotonation constants in non-aqueous media. J. Porphyr. Phtalocyanines 11, 269–276 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge European Union Marie Curie Transfer of Knowledge Research Grants MTKD-CT-2006-042708, the Polish Ministry of Sciences and Higher Education no. 105/6.PR UE/2007/7, and statutory funds of the Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Olsztyn, Poland. The authors also thank the IWT (Institute for the Promotion of Innovation through Science and Technology in Flanders) for a doctoral fellowship to Thien H. Ngo and the KU Leuven for continuing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerzy Radecki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nulens, W., Grabowska, I., Ngo, T.H. et al. Determination of the surface acidity of a free-base corrole in a self-assembled monolayer. J Incl Phenom Macrocycl Chem 71, 499–505 (2011). https://doi.org/10.1007/s10847-010-9889-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-010-9889-y

Keywords

Navigation