Skip to main content
Log in

Solvent Effect on Protonation Constants of 5, 10, 15, 20-Tetrakis(4-sulfonatophenyl)porphyrin in Different Aqueous Solutions of Methanol and Ethanol

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The protonation constants of 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin, H2tpps4−, were determined in water–ethanol and water–methanol mixed solvents, using a combination of spectrophotometric and potentiometric methods at 20 °C and 0.1 mol⋅dm−3 sodium perchlorate as supporting electrolyte. Two protonation constants, K 1 and K 2, were characterized and were analyzed in various media in terms of the Kamlet, Abboud and Taft (KAT) parameters. Single-parameter correlations of the protonation constant K 1 versus α (hydrogen-bond donor acidity) and π * (dipolarity/polarizability) are poor in all solutions, but dual-parameter (α and π *) correlation represents a significant improvement with regard to the single- and multi-parameter models. However, the single-parameter correlation of log 10 K 2 in terms of β (hydrogen-bond acceptor basicity) shows a better result than dual- and multi-parameter correlations. Linear correlation is observed when the experimental log 10 K 1 and log 10 K 2 values are plotted versus the calculated ones when the KAT parameters are considered. To evaluate the protonation constants of H2tpps4−, the Yasuda-Shedlovsky extrapolation is used to obtain the log 10 K 1 and log 10 K 2 values at zero percent organic solvent. Finally, the results are discussed in terms of the effect of the solvent on protonation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rothemund, P.: A new porphyrin synthesis. The synthesis of porphin. J. Am. Chem. Soc. 58, 625–627 (1936)

    Article  CAS  Google Scholar 

  2. Longo, F.R., Brown, E.M., Rew, W., Adler, A.D.: The Porphyrins. Academic Press, New York (1980)

    Google Scholar 

  3. Lavallee, D.K.: Kinetics and mechanisms of metalloporphyrin reactions. Coord. Chem. Rev. 61, 55–96 (1985)

    Article  CAS  Google Scholar 

  4. Brault, D.: Physical chemistry of porphyrins and their interactions with membranes: the importance of pH. J. Photochem. Photobiol. B, Biol. 6, 79–86 (1990)

    Article  CAS  Google Scholar 

  5. Makino, T.: A simple and sensitive colorimetric assay of zinc in serum using cationic porphyrin. Clin. Chim. Acta 282, 65–76 (1999)

    Article  CAS  Google Scholar 

  6. Milgrom, L.R.: The Colors of Life: An Introduction to the Chemistry of Porphyrins and Related Compounds. Oxford University Press, Oxford (1997)

    Google Scholar 

  7. Engst, P., Kubat, P., Jirsa, M.: The influence of D2O on the photophysical properties of meso-tetra (4-sulphonatophenyl) porphine, Photosan III and tetrasulphonated aluminium and zinc phthalocyanines. J. Phochem. Photobiol. A, Chem. 78, 215–219 (1994)

    Article  CAS  Google Scholar 

  8. Mosinger, J., Deumie, M., Lang, K., Kubat, P., Wagnerova, D.M.: Supramolecular sensitizer: Complexation of meso-tetrakis(4-sulfonatophenyl)porphyrin with 2-hydroxypropyl-cyclodextrins. J. Photochem. Photobiol. A, Chem. 130, 13–20 (2000)

    Article  CAS  Google Scholar 

  9. Cunderlikova, B., Gangeskar, L., Moan, J.: Acid-base properties of chlorin e6: relation to cellular uptake. J. Photochem. Photobiol. B, Biol. 53, 81–90 (1999)

    Article  CAS  Google Scholar 

  10. Tannock, I.F., Rotin, D.: Acid pH in tumors and its potential for therpeutic exploitation. Cancer Res. 49, 4373–4384 (1989)

    CAS  Google Scholar 

  11. Wike-Hooley, J.L., Haveman, J., Reinhold, J.S.: The relevance of tumour pH to the treatment of malignant disease. Radiother. Oncol. 2, 343–366 (1984)

    Article  CAS  Google Scholar 

  12. Brunner, H., Arndt, M.R., Treittinger, B.: Porphyrin platinum conjugates—new aims. Inorg. Chim. Acta 357, 1649–1669 (2004)

    Article  CAS  Google Scholar 

  13. Fleischer, E.B., Palmer, J.M., Srivastava, T.S., Chatterjee, A.: Thermodynamic and kinetic properties of an iron porphyrin system. J. Am. Chem. Soc. 93, 3162–3165 (1971)

    Article  CAS  Google Scholar 

  14. Gameiro, P., Reis, S., Lima, J.L.F.C., de Castro, B.: Calibration of pH glass electrodes by direct strong acid/strong base titrations under dilute conditions. Anal. Chim. Acta 405, 167–172 (2000)

    Article  CAS  Google Scholar 

  15. Jaime-Ferrer, J.S., Couallier, E., Rakib, M., Durand, G.: Electrochemical determination of acidity level and dissociation of formic acid/water mixtures as solvent. Electrochim. Acta 52, 5773–5780 (2007)

    Article  Google Scholar 

  16. Beltran, J.L., Codony, R., Prat, M.D.: Evaluation of stability constants from multi-wavelength absorbance data: program STAR. Anal. Chim. Acta 276, 441–454 (1993)

    Article  CAS  Google Scholar 

  17. Pasternack, R.F., Francesconi, L., Raff, D., Spiro, E.: Aggregation of nickel(II), copper(II), and zinc(II) derivatives of water-soluble porphyrins. J. Am. Chem. Soc. 95, 2606–2611 (1973)

    Article  Google Scholar 

  18. Satteriee, I.D., Shelnutt, A.: Studies of urohemin-I in aqueous-solution, thermodynamics of self-association and elerctronic-propertities of 2 species detected by proton nmr-spectroscopy. J. Phys. Chem. 88, 5487–5492 (1984)

    Article  Google Scholar 

  19. Chandrashekar, T.K., Van-Willigen, H., Ebersole, M.H.: Optical and electron-spin resonance study of cation and cation crown ether induced dimerization of tetrakis(4-sulfonatophenyl)porphyrin. J. Phys. Chem. 88, 4326–4332 (1984)

    Article  CAS  Google Scholar 

  20. Kano, K., Nakajima, T., Takei, M., Hashimoto, S.: Self aggregation of cationic porphyrin in water. Bull. Chem. Soc. Jpn. 60, 1281–1287 (1987)

    Article  CAS  Google Scholar 

  21. Beck, M.T., Nagypal, I.: Chemistry of Complex Equilibria. Ellis Harwood, New York (1990)

    Google Scholar 

  22. Farajtabar, A., Gharib, F., Jamaat, P., Safari, N.: Complexation of 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin with zinc(II) ions in aqueous solution. J. Chem. Eng. Data 53, 350–354 (2008)

    Article  CAS  Google Scholar 

  23. Tabata, M., Tanaka, M.: A new method for the determination of the stability constant of metalloporphyrins, use of the catalytic effect of mercury(II) on metalloporphyrin formation. J. Chem. Soc. Chem. Commun., 42–43 (1985)

  24. Okumura, R., Hinoue, T., Watarai, H.: Ion-association adsorption of water-soluble porphyrin at a liquid-liquid aqueous systems. Anal. Sci. 12, 393–397 (1996)

    Article  CAS  Google Scholar 

  25. Mohajer, D., Zakavi, S., Rayati, S., Zahedi, M., Safari, N., Khavasi, H.R., Shahbazian, S.: Unique 1:2 adduct formation of meso-tetraarylporphyrins and meso-tetraalkylporphyrins with BF3: spectroscopic and ab initio study. New J. Chem. 28, 1600–1607 (2004)

    Article  CAS  Google Scholar 

  26. Baker, H., Wagner, L., Hambright, P.: Metal ion porphyrin interactions. Evidence for nonexistence of sitting atop complexes in aqueous solution. J. Am. Chem. Soc. 95, 5942–5946 (1973)

    Article  CAS  Google Scholar 

  27. Barbosa, J., Barron, D., Beltran, J.L., Buti, S.: On the role of solvent in acid–base equilibria of diuretics in acetonitrile–water mixed solvents. Talanta 45, 817–827 (1998)

    Article  CAS  Google Scholar 

  28. Barbosa, J., Toro, I., Sanz-Nebot, V.: Acid-base behavior of tripeptides in solvent used in liquid chromatography. Correlation between pK values and solvatochromic parameters of acetonitrile-water mixtures. Anal. Chim. Acta 347, 295–304 (1997)

    Article  CAS  Google Scholar 

  29. Demirelli, H.: On the role of the solvent and substituent on the protonation equilibria of di-substituted anilines in dioxane-water mixed solvents. J. Sol. Chem. 34, 1283–1295 (2005)

    Article  CAS  Google Scholar 

  30. Isutsu, K.: Electrochemistry in Nonaqueous Solutions. Wiley-VCH, Weinheim (2002)

    Book  Google Scholar 

  31. Reichardt, C.: Solvents and Solvent Effects in Organic Chemistry, 3rd edn. Wiley-VCH, Weinheim (2004)

    Google Scholar 

  32. Taft, R.W., Abboud, J.L.M., Kamlet, M.J.: Linear solvation energy relationships. 28. An analysis of Swain’s solvent “acidity” and “basicity” scales. J. Org. Chem. 49, 2001–2005 (1984)

    Article  Google Scholar 

  33. Kamlet, M.J., Abboud, J.L.M., Abraham, M.H., Taft, R.W.: Linear solvation energy relationships. 23. A comprehensive collection of the solvatochromic parameters, π *,α, and β, and some methods for simplifying the generalized solvatochromic equation. J. Org. Chem. 48, 2877–2887 (1983)

    Article  CAS  Google Scholar 

  34. Gharib, F., Jabbari, M., Farajtabar, A., Shamel, A.: Solvent effects on protonation and complexation of glutamic and aspartic acids with molybdenum(VI) in different aqueous solutions of methanol. J. Chem. Eng. Data 53, 1772–1778 (2008)

    Article  CAS  Google Scholar 

  35. Gharib, F.: Solvent effects on complexation of dioxovanadium(V) with penicillamine in methanol-water mixtures. J. Chem. Eng. Data 50, 196–200 (2005)

    Article  CAS  Google Scholar 

  36. Gharib, F., Sadeghi, F.: Solvent Effects on complexation of thallium(I) with guanosine 5′-monophosphate in methanol-water mixtures. Appl. Organomet. Chem. 21, 218–225 (2007)

    Article  CAS  Google Scholar 

  37. Maleki, N., Haghighi, B., Safavi, A.: Evaluation of formation constants, molar absorptivities of metal complexes, and protonation constants of acids by nonlinear curve fitting using Microsoft Excel Solver. Micochem. J. 62, 229–236 (1999)

    Article  CAS  Google Scholar 

  38. Buhvestov, U., Rived, F., Rafols, C., Bosch, E., Roses, M.: Solute-solvent and solvent-solvent interactions in binary solvent mixtures, part 7: comparison of the enhancement of the water structure in alcohol-water mixtures measured by solvatochromic indicators. J. Phys. Org. Chem. 11, 185–192 (1998)

    Article  CAS  Google Scholar 

  39. Akerlof, G.: Dielectric constants of some organic solvent-water mixtures at various temperatures. J. Am. Chem. Soc. 54, 4125–4139 (1932)

    Article  CAS  Google Scholar 

  40. Moger, G.: Solvent effect on the dissociation constants and Soret band maxima of hematoporphyrin diacid. React. Kinet. Catal. Lett. 54, 329–336 (1995)

    Article  CAS  Google Scholar 

  41. Barbosa, J., Fonrodona, G., Marques, I., Buti, S., Toro, I.: Factor analysis applied to the correlation between dissociation constants and solvatochromic parameters in water-acetonitrile mixtures, II: Study of solvent effects on the dissociation of functional groups of diuretics, quinolones, buffers and peptides. Trends Anal. Chem. 16, 104–111 (1997)

    Article  CAS  Google Scholar 

  42. Yasuda, M.: Dissociation constants of some carboxylic acids in mixed aqueous solvents. Bull. Chem. Soc. Jpn. 32, 429–432 (1959)

    Article  CAS  Google Scholar 

  43. Shedlovsky, T.: In: Peasce, B. (ed.) Electrolytes. Pergamon, New York (1962)

    Google Scholar 

  44. Ruiz, R., Rrafols, C., Roses, M., Bosch, E.: A potentially simpler approach to measure aqueous pK a of insoluble basic drugs containing amino groups. J. Pharm. Sci. 92, 1473–1481 (2003)

    Article  CAS  Google Scholar 

  45. Avdeef, A., Box, K.J., Comer, J.E.A., Gilges, M., Hadley, M., Hibbert, C., Patterson, W., Tam, K.Y.: PH-metric log P11. pK(a) determination of water-insoluble drugs in organic solvent-water mixtures. J. Pharm. Biomed. Anal. 20, 631–641 (1999)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farrokh Gharib.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farjtabar, A., Gharib, F. Solvent Effect on Protonation Constants of 5, 10, 15, 20-Tetrakis(4-sulfonatophenyl)porphyrin in Different Aqueous Solutions of Methanol and Ethanol. J Solution Chem 39, 231–244 (2010). https://doi.org/10.1007/s10953-010-9496-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-010-9496-y

Keywords

Navigation