Skip to main content
Log in

Host–guest association studied by fluorescence correlation spectroscopy

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Fluorescence Correlation Spectroscopy (FCS) is a powerful single molecule technique for the study of the stability and the association dynamics of supramolecular systems and, in particular, of host–guest inclusion complexes. With FCS the host–guest binding equilibrium constant is determined analysing the variation in the diffusion coefficient of the fluorescent guest or host with no need for a change in the photophysical properties of the fluorescent probe. FCS gives also access to the association/dissociation rate constants of the host–guest inclusion providing that the fluorescence intensity of host or guest changes upon complexation. These rate constants can be compared with that of a diffusion-controlled process estimated from the same FCS experiment allowing for a better understanding of the association dynamics. The results show that cyclodextrin cavities act as “hard” cages which put geometric and orientational restrictions on the inclusion of a hydrophobic guest, whereas micelles behave as “soft” cages without geometrical requirements.

In our contribution to this special issue we review briefly the application of FCS to the study of host–guest inclusion complexes with an emphasis on practical aspects and relevant bibliographic references.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. As usual we use “binding” as a general term for an attractive noncovalent interaction. In the context of “host–guest” systems it refers to a “complexation” or more specifically to “inclusion”.

  2. Here we assume that the guest acts as fluorescent probe. Being FCS a single molecule technique, the total concentration of the fluorescent probe is very low, of the order of [G]0 ≈ 10−8 M. Thus, the condition ([H] 0  ≫ [G]0) is fulfilled even for hosts of low solubility or high affinity systems.

  3. Don’t confuse the time dependence of the guest concentration [G](t) with the autocorrelation of the intensity fluctuations G(τ) defined in Eq. (4).

  4. The species dependent brightness is given by the product of the extinction coefficient, fluorescence quantum yield and detection efficiency and is a measure for the detected fluorescence count rate from each species.

References

  1. Dodziuk, H.: Introduction to Supramolecular Chemistry. Springer, Dordrecht (2002)

    Google Scholar 

  2. Bohne, C.: Supramolecular dynamics studied using photophysics. Langmuir. 22, 9100–9111 (2006)

    Article  CAS  Google Scholar 

  3. Al-Soufi, W., Reija, B., Novo, M., Felekyan, S., Kühnemuth, R., Seidel, C.A.M.: Fluorescence correlation spectroscopy, a tool to investigate supramolecular dynamics: inclusion complexes of pyronines with cyclodextrin. J. Am. Chem. Soc. 127, 8775–8784 (2005)

    Article  CAS  Google Scholar 

  4. Al-Soufi, W., Reija, B., Felekyan, S., Seidel, C.A., Novo, M.: Dynamics of supramolecular association monitored by fluorescence correlation spectroscopy. Chemphyschem. 9, 1819–1827 (2008)

    Article  CAS  Google Scholar 

  5. Cramer, F., Saenger, W., Spatz, H.C.: Inclusion compounds. XIX. The formation of inclusion compounds of alpha-cyclodextrin in aqueous solutions. Thermodynamics and kinetics. J. Am. Chem. Soc. 89(1), 14–20 (1967). doi:10.1021/ja00977a003

    Article  CAS  Google Scholar 

  6. Kleinman, M.H., Bohne, C.: Use of photophysical probes to study dynamic processes in supramolecular structures. In: Ramamurthy, V., Schanze, K.S. (eds.) Organic Photochemistry, p. 391. Marcel Dekker Inc, New York (1997)

  7. Pace, T.C.S., Bohne, C.: Dynamics of guest binding to supramolecular systems: techniques and selected examples. Adv. Phys. Org. Chem. 42, 167–223 (2008)

    Article  CAS  Google Scholar 

  8. Zana, R.: Dynamics of Surfactant Self-Assemblies: Micelles, Microemulsions, Vesicles, and Lyotropic Phases. Taylor & Francis/CRC Press, Boca Raton (2005)

    Book  Google Scholar 

  9. Selvin, P.R., Ha, T.: Single-Molecule Techniques: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (2008)

    Google Scholar 

  10. Walter, N.G., Huang, C.Y., Manzo, A.J., Sobhy, M.A.: Do-it-yourself guide: how to use the modern single-molecule toolkit. Nat. Methods. 5, 475–489 (2008)

    Article  CAS  Google Scholar 

  11. Widengren, J., Rigler, R.: Fluorescence correlation spectroscopy as a tool to investigate chemical reactions in solutions and on cell surfaces. Cell. Mol. Biol. 44, 857–879 (1998)

    CAS  Google Scholar 

  12. Van Craenenbroeck, E., Engelborghs, Y.: Fluorescence correlation spectroscopy: molecular recognition at the single molecule level. J. Mol. Recognit. 13, 93–100 (2000)

    Article  Google Scholar 

  13. Krichevsky, O., Bonnet, G.: Fluorescence correlation spectroscopy: the technique and its applications. Rep. Prog. Phys. 65, 251–297 (2002)

    Article  CAS  Google Scholar 

  14. Hess, S.T., Huang, S., Heikal, A.A., Webb, W.W.: Biological and chemical applications of fluorescence correlation spectroscopy: a review. Biochemistry. (N. Y.) 41, 697–705 (2002)

    Article  CAS  Google Scholar 

  15. Gösch, M., Rigler, R.: Fluorescence correlation spectroscopy of molecular motions and kinetics: advances in fluorescence imaging: opportunities for pharmaceutical science. Adv. Drug Deliv. Rev. 57, 169–190 (2005)

    Article  Google Scholar 

  16. Thompson, N.L.: Fluorescence correlation spectroscopy. In: Lakowicz, J.R. (ed.) Topics in Fluorescence Spectroscopy. Techniques, p. 337. Plenum Press, New York (1991)

  17. Rigler, R., Elson, E.S.: Fluorescence Correlation Spectroscopy: Theory and Applications. Springer Verlag, Berlin (2001)

    Google Scholar 

  18. Zander, C., Enderlein, J., Keller, R.A.: Single-Molecule Detection in Solution—Methods and Applications. VCH-Wiley, Berlin (2002)

    Book  Google Scholar 

  19. Gell, C., Brockwell, D., Smith, A.: Handbook of Single Molecule Fluorescence Spectroscopy. Oxford University Press, Oxford (2006)

    Google Scholar 

  20. Valeur, B.: Molecular Fluorescence: Principles and Applications. Wiley-VCH, Weinheim (2002)

    Google Scholar 

  21. Lakowicz, J.R.: Principles of Fluorescence Spectroscopy. Springer, New York (2006)

    Book  Google Scholar 

  22. Granadero, D., Bordello, J., Pérez-Alvite, M.J., Novo, M., Al-Soufi, W.: Host-guest complexation studied by fluorescence correlation spectroscopy: adamantane–cyclodextrin inclusion. Int. J. Mol. Sci. 11, 173–188 (2010)

    Article  CAS  Google Scholar 

  23. Enderlein, J., Gregor, I., Patra, D., Fitter, J.: Art and artefacts of fluorescence correlation spectroscopy. Curr. Pharm. Biotechnol. 5, 155–161 (2004)

    Article  CAS  Google Scholar 

  24. Enderlein, J., Gregor, I., Patra, D., Dertinger, T., Kaupp, U.B.: Performance of fluorescence correlation spectroscopy for measuring diffusion and concentration. Chemphyschem. 6, 2324–2336 (2005)

    Article  CAS  Google Scholar 

  25. Bordello, J., Novo, M., Al-Soufi, W.: Exchange-dynamics of a neutral hydrophobic dye in micellar solutions studied by fluorescence correlation spectroscopy. J. Colloid Interface Sci. 345, 369–376 (2010)

    Article  CAS  Google Scholar 

  26. Widengren, J., Mets, U., Rigler, R.: Fluorescence correlation spectroscopy of triplet states in solution: a theoretical and experimental study. J. Phys. Chem. 99, 13368–13379 (1995)

    Article  CAS  Google Scholar 

  27. Reija, B., Al-Soufi, W., Novo, M., Vázquez Tato, J.: Specific interactions in the inclusion complexes of pyronines Y and B with beta-cyclodextrin. J. Phys. Chem. B 109, 1364–1370 (2005)

    Article  CAS  Google Scholar 

  28. Bordello, J., Reija, B., Al-Soufi, W., Novo, M.: Host-assisted guest self-assembly: enhancement of the dimerization of pyronines Y and B by gamma-cyclodextrin. Chemphyschem. 10, 931–939 (2009)

    Article  CAS  Google Scholar 

  29. Gendron, P.O., Avaltroni, F., Wilkinson, K.J.: Diffusion coefficients of several rhodamine derivatives as determined by pulsed field gradient-nuclear magnetic resonance and fluorescence correlation spectroscopy. J. Fluoresc. 18, 1093–1101 (2008)

    Article  CAS  Google Scholar 

  30. Müller, C.B., Eckert, T., Loman, A., Enderlein, J., Richtering, W.: Dual-focus fluorescence correlation spectroscopy: a robust tool for studying molecular crowding. Soft Matter. 5, 1358–1366 (2009)

    Article  Google Scholar 

  31. Dodziuk, H.: Rigidity versus flexibility. A review of experimental and theoretical studies pertaining to the cyclodextrin nonrigidity. J. Mol. Struct. 614, 33–45 (2002)

    Article  CAS  Google Scholar 

  32. Almgren, M., Wang, K., Asakawa, T.: Fluorescence quenching studies of micellization and solubilization in fluorocarbon-hydrocarbon surfactant mixtures. Langmuir. 13, 4535–4544 (1997)

    Article  CAS  Google Scholar 

  33. Novo, M., Felekyan, S., Seidel, C.A.M., Al-Soufi, W.: Dye-exchange dynamics in micellar solutions studied by fluorescence correlation spectroscopy. J. Phys. Chem. B 111, 3614–3624 (2007)

    Article  CAS  Google Scholar 

  34. Freire, S., Bordello, J., Granadero, D., Al Soufi, W., Novo, M.: Role of electrostatic and hydrophobic forces in the interaction of ionic dyes with charged micelles. Photochem. Photobiol. Sci. 9, 687–696 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

MN and WAS thank the Xunta de Galicia and the Ministerio de Educación y Ciencia for financial support (CTQ2007-68057-C02-02/BQU, INCITE09E2R209064ES, INCITE09262304PR, 2009/029). J. B. thanks the Ministerio de Educación y Ciencia for a research scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mercedes Novo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novo, M., Granadero, D., Bordello, J. et al. Host–guest association studied by fluorescence correlation spectroscopy. J Incl Phenom Macrocycl Chem 70, 259–268 (2011). https://doi.org/10.1007/s10847-010-9859-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-010-9859-4

Keywords

Navigation